首页 | 本学科首页   官方微博 | 高级检索  
     


Modeling network autocorrelation within migration flows by eigenvector spatial filtering
Authors:Yongwan Chun
Affiliation:(1) School of Economic, Political and Policy Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
Abstract:Although the assumption of independence among interaction flows frequently is engaged in spatial interaction modeling, in many circumstances it leads to misspecified models and incorrect inferences. An informed approach is to explicitly incorporate an assumed relationship structure among the interaction flows, and to explicitly model the network autocorrelation. This paper illustrates such an approach in the context of U.S. interstate migration flows. Behavioral assumptions, similar to those of the intervening opportunities or the competing destinations concepts, exemplify how to specify network flows that are related to particular origin–destination combinations. The stepwise incorporation of eigenvectors, which are extracted from a network link matrix, captures the network autocorrelation in a Poisson regression model specification context. Spatial autocorrelation in Poisson regression is measured by the test statistic of Jacqmin-Gadda et al. (Stat Med 16(11):1283–1297, 1997). Results show that estimated regression parameters in the spatial filtering interaction model become more intuitively interpretable.
Contact Information Yongwan ChunEmail:
Keywords:Network autocorrelation  Spatial filtering  Spatial interaction  Eigenvector  Migration
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号