首页 | 本学科首页   官方微博 | 高级检索  
     

梅雨降水季节预测的多方法比较
引用本文:李琳菲,杨颖,朱志伟,王蔚. 梅雨降水季节预测的多方法比较[J]. 大气科学学报, 2024, 47(2): 313-329
作者姓名:李琳菲  杨颖  朱志伟  王蔚
作者单位:南京信息工程大学 气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心, 江苏 南京 210044;南京信息工程大学 气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心, 江苏 南京 210044;中国气象科学研究院 灾害天气国家重点实验室, 北京 100086;上海市闵行区气象局, 上海 201199
基金项目:国家自然科学基金资助项目(42088101)
摘    要:基于1961—2000年逐月降水观测资料和全球大气再分析资料,分析了6—7月长江中下游(108°~123°E,27°~33°N)梅雨的时空分布特征。通过观测诊断和数值试验确定了影响梅雨异常偏多的3个前期因子:4—5月平均的西北太平洋海平面气压正异常;3月至5月北大西洋海平面气压负变压倾向;1月至4月西伯利亚的2 m温度负倾向。利用这3个具有物理意义的影响因子构建了梅雨季节预测模型,该模型在训练期(1961—2000年)和独立预测期(2001—2022年)均具有显著的预测技巧(相关系数分别为0.79和0.77,均方根误差分别为0.59和0.68)。同时,基于相似的潜在预测因子,对比了利用偏最小二乘回归方法和5种机器学习方法(随机森林、轻量级梯度提升机、自适应提升、类别型特征提升、极端梯度提升)建立的预测模型的技巧。虽然训练期(1961—2000年)偏最小二乘回归和机器学习建模拟合效果更高,但在独立预测期(2001—2022年)上述模型的预测技巧显著降低(相关系数均低于0.44,均方根误差均大于0.93),出现了明显的过拟合问题。本研究强调梅雨的短期气候预测应建立在物理机制基础之上,而使用机器学习方法需谨慎。

关 键 词:梅雨  季节预测  物理经验预测模型  机器学习
收稿时间:2023-12-25
修稿时间:2024-02-23

A comparative study of multiple methods for seasonal prediction of Meiyu rainfall
LI Linfei,YANG Ying,ZHU Zhiwei,WANG Wei. A comparative study of multiple methods for seasonal prediction of Meiyu rainfall[J]. Transactions of Atmospheric Sciences, 2024, 47(2): 313-329
Authors:LI Linfei  YANG Ying  ZHU Zhiwei  WANG Wei
Affiliation:Key Laboratory of Meteorological Disaster, Ministry of Education(KLME)/Joint International Research Laboratory of Climate and Environment Change(ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, China;Key Laboratory of Meteorological Disaster, Ministry of Education(KLME)/Joint International Research Laboratory of Climate and Environment Change(ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, China;State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100086, China; Minhang Meteorological Bureau, Shanghai 201199, China
Abstract:This study elucidates the spatiotemporal characteristic of June—July mean Meiyu rainfall over the middle and lower reaches of the Yangtze River basin(27°—33°N,108°—123°E) using Chinese monthly gauge precipitation data and global atmospheric reanalysis datasets from 1961 to 2000.Three physically meaningful precursors play pivotal roles in enhancing Meiyu rainfall during June and July.First,positive sea level pressure anomalies over the subtropical western Pacific (SWP) during April—May strengthened the western North Pacific subtropical high by exciting Kelvin wave responses and enhancing Walker circulation.This phenomenon facilitates moisture transport from the tropics to the Yangtze River via southerly winds.The mechanism underlying SWP’s impact on Meiyu highlights the persistent influence of atmosphere-ocean interaction over the Indo-Pacific basin from spring to summer.Second,the negative tendency of sea level pressure over the North Atlantic from March to May (NAP) reflects the influence of North Atlantic Oscillation (NAO)-related mid-latitude wave trains on Meiyu.From spring to early summer,the evolution of NAO-related wave trains across Eurasia strengthens the Northeast Asian cyclone and enhances Meiyu rainfall.Third,the cooling tendency of surface temperature over East Siberian from January to April (EST) is closely associated with the extratropical westerly jet by amplifying the temperature gradient between the tropics and polar regions.This condition favors the maintenance of meridional circulation over East Asia and enhances Meiyu rainfall.The aforementioned mechanisms have been verified in corresponding numerical experiments based on a linear baroclinic model.Consequently,a physically-based empirical (PE) model based on these three predictors exhibited significant prediction skills,with a temporal correlation coefficient (TCC) of 0.79 and 0.77 and a mean square skill score (RMSE) of 0.59 and 0.68 during the training period (1961—2000) and independent forecast period (2001—2022),respectively.For comparison,the partial least squares (PLS) regression method and five machine learning methods (Random Forest,LightGBM,Adaboost,Catboost,and XGboost) are employed to conduct seasonal predication of Meiyu based on the same potential precursors.Although the PLS model and five machine learning models exhibit prefect hindcast skills (TCCs of LightGBM,Catboost,and XGboost all being 1.00) during the training period,their skills diminish dramatically in the independent forecast period of 2001—2022 (with the maximum TCC being 0.43 and the minimum RMSE being 0.94),indicating a significant overfitting problem.Hence,the PE model based on physically meaningful precursors demonstrates superior and stable independent prediction skills in Meiyu rainfall forecasts.The findings of this study underscore the advantages of the PE model and emphasize caution in the use of machine learning methods in climate prediction.Additionally,the comparison of multiple methods for seasonal prediction of Meiyu in this study provides practical scientific references for operational departments engaged in seasonal climate prediction.
Keywords:Meiyu  seasonal prediction  physics-based empirical model  machine learning
点击此处可从《大气科学学报》浏览原始摘要信息
点击此处可从《大气科学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号