首页 | 本学科首页   官方微博 | 高级检索  
     

预测有效波高的深度学习模型研究
引用本文:秦易凡,罗锋,张杰,汪忆,张义丰. 预测有效波高的深度学习模型研究[J]. 海洋通报, 2024, 0(3)
作者姓名:秦易凡  罗锋  张杰  汪忆  张义丰
作者单位:河海大学 港口海岸与近海工程学院,江苏 南京 210098;河海大学 港口海岸与近海工程学院,江苏 南京 210098;南通河海大学海洋与近海工程研究院, 江苏 南通 226000;河海大学海岸灾害及防护教育部重点实验室,江苏 南京 210098;河海大学 港口海岸与近海工程学院,江苏 南京 210098; 河海大学海岸灾害及防护教育部重点实验室,江苏 南京 210098
基金项目:江苏省海洋科技创新项目(JSZRHYKJ202105,JSZRHYKJ202303); 南通社会民生科技计划项目(MS12022009;MS22022082; MS22022083)
摘    要:研究基于RNN、LSTM、GRU深度学习模型,针对NOAA浮标数据集中的44013、44014、44017浮标的数据,通过斯皮尔曼相关性分析提高模型预测效果。实验结果表明,在进行相关性分析后,S-RNN、S-LSTM、 S-GRU的预测效果均比原始RNN、LSTM、GRU模型预测效果好。此外,提出一种基于LSTM的LSTM-Attention 波高预测模型,并进行相关实验,量化LSTM-Attention模型的预测效果,实验结果表明LSTM-Attention模型有更好的预测效果。为评估模型的泛化能力,研究还提出了一种采用邻近浮标数据进行学习,预测浮标缺失数据的方 法。实验结果表明,该方法的预测精度可以达到97.93%。本研究为海浪预测提供了新的方法和思路,也为未来深 度学习模型在海浪预测中的应用提供了参考。

关 键 词:深度学习;海浪;有效波高;LSTM-Attention
收稿时间:2023-06-06
修稿时间:2023-09-08

Research on deep learning models for predicting significant wave height
QIN Yifan,LUO Feng,ZHANG Jie,WANG Yi,ZHANG Yifeng. Research on deep learning models for predicting significant wave height[J]. Marine Science Bulletin, 2024, 0(3)
Authors:QIN Yifan  LUO Feng  ZHANG Jie  WANG Yi  ZHANG Yifeng
Affiliation:College of Harbor, Coastal and Offshore Engineering, Hohai University, Nanjing 21009, China;College of Harbor, Coastal and Offshore Engineering, Hohai University, Nanjing 21009, China; Nantong Ocean and Coastal Engineering Research Institute, Hohai University,Nantong 226000, China; Key Laboratory of Ministry of Education for Coastal Disaster and Protection , Hohai University, Nanjing 210098, China; College of Harbor, Coastal and Offshore Engineering, Hohai University, Nanjing 21009, China; Key Laboratory of Ministry of Education for Coastal Disaster and Protection , Hohai University, Nanjing 210098, China
Abstract:Based on deep learning models RNN, LSTM, and GRU, this study aims to improve the predictive performance of the model for 44013, 44014, and 44017 buoys in the NOAA buoy dataset through Spearman correlation analysis. The experimental results show that after conducting correlation analysis, the prediction performance of S-RNN, S-LSTM, and S GRUmodels is better than that of the original RNN, LSTM, and GRU models. In addition, an LSTM Attention wave height prediction model based on LSTM was proposed and relevant experiments were conducted to quantify the predictive performance of the LSTM Attention model. The experimental results showed that the LSTM Attention model had better predictive performance. To evaluate the generalization ability of the model, a learning method using neighboring buoy data was proposed to predict missing data buoys. The experimental results show that the prediction accuracy of this method can reach 97.93%. This study provides new methods and ideas for wave prediction, and also provides reference for the application of deep learning models in wave prediction in the future.
Keywords:deep learning   sea wave   significant wave height   LSTM-Attention
点击此处可从《海洋通报》浏览原始摘要信息
点击此处可从《海洋通报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号