首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A theory of concentric, kink and sinusoidal folding and of monoclinal flexuring of compressible, elastic multilayers: V. asymmetric folding in interbedded chert and shale of the franciscan complex, san francisco bay area, california
Authors:Ivar B Ramberg  Arvid M Johnson
Abstract:The origin of tight, asymmetric, kink-like or chevron-like folds in interbedded shales and radiolarian cherts of the Franciscan Complex in the San Francisco Bay area has been somewhat of a mystery for many years. Stephenson Ellen provided many clues as to the origin and indicated that the folds became asymmetric as a result of layer-parallel shear. He believed that the original folds were conjugate kink folds.As a result of reexamination of most of the folds studied by Ellen, of experimentation with elastic multilayers and of the theories developed in Parts III and IV of this series of papers, we believe that the original folds were mostly chevron rather than kink folds. Thus, we suggest that the folds formed by a combination of layer-parallel shortening and layer-parallel shear when the rocks were soft and pore pressures were high.Several lines of evidence suggest that typical folds in the Franciscan are asymmetric chevron folds. A combination of theory of finite simple shear and of experimentation with elastic multilayers indicates that the tight folds of the Franciscan could have been produced by smaller angles of simple shear if the original folds were typical chevron folds rather than typical kink folds. Several field observations, including thickening of shales but not of cherts in hinges of folds and lack of deformation of radiolaria in the cherts, indicate that the cherts were soft and the shales very soft at the time of folding. The pore-water pressures in the shales probably were high. Such conditions theoretically favor concentric-like and chevron folding, not kink folding. Finally, most of the asymmetric folds in a quarry exposure can be reconstructed geometrically as typical chevron folds but not as typical kink folds subjected to simple shear.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号