首页 | 本学科首页   官方微博 | 高级检索  
     


Kinematics of fault-related folding in a duplex,lost river range,Idaho, U.S.A.
Affiliation:1. University of Sydney, Australia;2. University of Bern, Switzerland;3. Wuhan University, China
Abstract:The Doublespring duplex, located in the Lost River Range of Idaho, is a Sevier age fault-related fold complex in massive limestones of the Upper Mississippian Scott Peak Formation. Folds within the duplex closely resemble fault-bend fold geometrics, with open interlimb angles and low-angle bed cut-offs. Narrow, widely spaced, bedding-parallel shear zones with well-developed pressure solution cleavage alternate with massive, relatively undeformed layers on fold limbs. Shear zones are developed only on the limbs of anticlines, and have similar but unique morphologies in each of three different folds. Incremental strain histories reconstructed from antitaxial fibrous overgrowths and veins within the shear zones constrain the kinematics of folding. Shear zones experienced distributed bedding-parallel simple shear (flexural flow) towards pins near axial surfaces, while adjacent massive layers experienced rotation through an externally fixed extension direction. The absence of footwall synclines and morphological differences in shear zones from adjacent folds suggest that faulting preceded folding. Kinematic histories of folds that have experienced different translational histories are identical, and are not compatible with strain histories predicted from previous kinematic models of fault-bend folding. Shear zone development and fiber growth is instead interpreted to have occurred during low amplitude fixed-hinge buckling in response to initial resistance to translation of the thrust sheet. Fault-bend folding with mobile axial surfaces occurred with translation of the thrust sheets once the initial resistance to translation was overcome and resulted in no penetrative strain.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号