首页 | 本学科首页   官方微博 | 高级检索  
     

2015年3月特大磁暴期间中国区域电离层TEC NeuralProphet预报模型研究
引用本文:马彬, 黄玲, 吴晗, 楼益栋, 章红平, 陈德忠, 王高阳, 黄良珂. 2024. 2015年3月特大磁暴期间中国区域电离层TEC NeuralProphet预报模型研究. 地球物理学报, 67(2): 452-460, doi: 10.6038/cjg2023R0225
作者姓名:马彬  黄玲  吴晗  楼益栋  章红平  陈德忠  王高阳  黄良珂
作者单位:1. 桂林理工大学测绘地理信息学院, 桂林 541006; 2. 广西空间信息与测绘重点实验室, 桂林 541006; 3. 武汉大学卫星导航定位技术研究中心, 武汉 430079; 4. 山东省第一地质矿产勘查院, 济南 250014
基金项目:广西自然科学基金资助项目(2020GXNSFBA159033);;国家自然科学基金地区基金(42064002);
摘    要:

延迟是全球卫星导航定位中重要的误差源之一,提高电离层TEC建模和预报精度对改善卫星导航定位精度至关重要.本文构建了以太阳辐射通量指数F10.7、地磁活动指数Dst、地理坐标和中国科学院(Chinese Academy of Sciences,CAS) GIM数据为输入参数的NeuralProphet神经网络模型(NP模型),实现在2015年3月特大磁暴期中国区域电离层TEC短期预报.为验证NP模型的预报精度,本文同时构建了长短期记忆神经网络(Long Short-term Memory Neural Network,LSTM)模型进行对比分析.结果统计分析表明,NP模型在磁暴期(2015年DOY076-078) TEC预报值RMSE和RD分别为0.83 TECU和3.13%,绝对和相对精度较LSTM模型分别提高1.49 TECU和10.25%;且NP模型RMSE优于1.5 TECU的比例达97.24%,远高于LSTM模型.NP模型预报值与CAS具有较好一致性和无偏性,偏差均值仅为-0.01 TECU,而LSTM模型预报值的均值偏大,偏差均值为1.49 TECU.从低纬到中纬度的三个纬度带内,NP模型RMSE分别为1.12、0.83和0.44 TECU,精度比LSTM模型提高1.94、1.56和1.23 TECU.整体上,在磁暴期NP模型预报性能明显优于LSTM模型,能够精细描述中国区域电离层TEC时空变化.



关 键 词:电离层TEC   NeuralProphet神经网络   LSTM神经网络   短期预报   磁暴期
收稿时间:2023-04-12
修稿时间:2023-06-26

Study on the NeuralProphet forecast TEC model over China during the severe geomagnetic storm in March 2015
MA Bin, HUANG Ling, WU Han, LOU YiDong, ZHANG HongPing, CHEN DeZhong, WANG GaoYang, HUANG LiangKe. 2024. Study on the NeuralProphet forecast TEC model over China during the severe geomagnetic storm in March 2015. Chinese Journal of Geophysics (in Chinese), 67(2): 452-460, doi: 10.6038/cjg2023R0225
Authors:MA Bin  HUANG Ling  WU Han  LOU YiDong  ZHANG HongPing  CHEN DeZhong  WANG GaoYang  HUANG LiangKe
Affiliation:1. College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541006, China; 2. Guangxi Key Laboratory of Spatial Information and Geomatics, Guilin 541006, China; 3. Research Center of GNSS, Wuhan University, Wuhan 430079, China; 4. No. 1 Geological Team of Shandong Provincial Bureau of Geology and Mineral Resources, Jinan 250014, China
Abstract:Ionospheric delay is one of the significant error sources in global navigation satellite system. It is essential to improve the accuracy of ionospheric TEC modeling and forecasting for enhancing the accuracy of satellite navigation positioning. In this paper, a NeuralProphet neural network model (NP) is constructed with solar radiation flux index (F10.7), geomagnetic activity index (Dst), geographic coordinates and GIM from Chinese Academy of Sciences (CAS) as influence factors and input parameters. And the presented NP model is applied for the short-term forcasting of ionospheric TEC over China during the severe magnetic storm in March 2015. In order to verify the performence of NP model, a Long Short-term Memory Neural Network (LSTM) model is implemented for comparative analysis. The statistical analysis results show that the root mean square error (RMSE) and relative deviation (RD) of NP model during the geomagnetic storm period (DOY076-078) are 0.83 TECU and 3.13%, respectively, which are 1.49 TECU and 10.25% more accurate than LSTM model from the perspectives of absolute and relative accuracy. And for the ratio of RMSE less than 1.5 TECU, NP forecast model is about 97.24%, which is much better than LSTM model. The TEC predictions from NP model has good consistency and unbiasedness with CAS-TEC showing the mean bias of -0.01 TECU, while the LSTM model has a larger mean bias of 1.49 TECU. The RMSE of NP model are 1.12, 0.83 and 0.44 TECU, respectively, from low to mid-latitudinal zone, and the forecasting accuracy is 1.94, 1.56 and 1.23 TECU higher than LSTM model. The proposed NP forecast model has a significantly better forecasting performance than LSTM, which would be useful for characterizing the spatial-temporal characteristics more accurately under disturbed conditions over China.
Keywords:Ionospheric TEC  NeuralProphet neural network  LSTM neural network  Short-term Focasting  Geomagnetic storm
点击此处可从《地球物理学报》浏览原始摘要信息
点击此处可从《地球物理学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号