首页 | 本学科首页   官方微博 | 高级检索  
     

基于张量投票和目标追踪的墙体裂缝检测算法研究
引用本文:徐亚明,束进芳. 基于张量投票和目标追踪的墙体裂缝检测算法研究[J]. 大地测量与地球动力学, 2016, 36(4): 334-337
作者姓名:徐亚明  束进芳
作者单位:武汉大学测绘学院;精密工程与工业测量国家测绘地理信息局重点实验室;宁波市阿拉图数字科技中心
基金项目:现代城市测绘国家测绘地理信息局重点实验室开放基金(20131205WY)~~
摘    要:针对墙体裂缝对比度低、受噪声干扰严重等特点,提出了一种基于张量投票和目标追踪的墙体裂缝检测算法。在对原始影像进行二值化的基础上,利用张量投票的聚类思想,突出线性区域目标的强度,然后在突出的线性目标上选取特征点,对特征点进行追踪得到裂缝的大致位置,再反投到原始影像上。实验结果表明,该算法能够正确检测出墙体裂缝信息,且检测率较高,具有一定的通用性。

关 键 词:墙体裂缝  张量投票  概率图细化  目标追踪  反投定位  

Research on Wall Crack Detection Based on Tensor Voting and Target Tracking
XU Yaming;SHU Jinfang. Research on Wall Crack Detection Based on Tensor Voting and Target Tracking[J]. Journal of Geodesy and Geodynamics, 2016, 36(4): 334-337
Authors:XU Yaming  SHU Jinfang
Affiliation:XU Yaming;SHU Jinfang;School of Geodesy and Geomatics,Wuhan University;Key Laboratory of Precise Engineering &Industry Surveying,NASMG;Ningbo Alatu Digital Science and Technology Center;
Abstract:Considering the low contrast and severe noise features of wall crack images, this paper proposes a crack detection algorithm based on tensor voting and target tracking. On the basis of image binarization, the idea of clustering with tensor voting is used to highlight the linear target of the image. Then feature points are chosen on the highlighted linear target, and locations of cracks on the image are obtained through feature points tracking. Finally, the concept of re-cast is utilized to capture the original information of cracks. Test results show that this algorithm can detect cracks correctly on wall images and has high detection rate along with some degree of universality.
Keywords:wall crack  tensor voting  probability graph thinning  target tracking  anti-cast position  
本文献已被 CNKI 等数据库收录!
点击此处可从《大地测量与地球动力学》浏览原始摘要信息
点击此处可从《大地测量与地球动力学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号