首页 | 本学科首页   官方微博 | 高级检索  
     

深度学习的街景行道树自动识别提取研究
引用本文:董彦锋,胡伍生,余龙飞,龙凤阳,张良. 深度学习的街景行道树自动识别提取研究[J]. 测绘科学, 2021, 46(2): 139-145
作者姓名:董彦锋  胡伍生  余龙飞  龙凤阳  张良
作者单位:东南大学交通学院,南京211189;同方威视技术股份有限公司,南京210019
基金项目:国家自然科学基金项目(41574022);江苏省研究生科研与实践创新计划项目(KYCX170150)。
摘    要:针对城市行道树调查中,街景影像背景环境复杂多变、行道树个体差异大,依靠目视判读费时费力的问题,该文基于车载移动测量系统采集的全景影像数据,利用深度学习算法,在快速区域卷积神经网络的目标检测方法基础上,建立适用于街景行道树检测的深度神经网络模型。模型采用基于共有显著性区域及冗余策略的行道树多示例目标候选区域选择方法,使用车载图像的几何约束进一步筛选合适的候选区域,从而实现行道树目标候选区域的统一选择,提升行道树目标的检测效果。实验结果表明,该文提出的方法能够实现多种行道树的准确自动识别与提取,进而大大降低行道树绿化调查的成本。

关 键 词:卷积神经网络  候选区域选择  目标检测  行道树

Research on automatic recognition and extraction of street trees based on deep learning
DONG Yanfeng,HU Wusheng,YU Longfei,LONG Fengyang,ZHANG Liang. Research on automatic recognition and extraction of street trees based on deep learning[J]. Science of Surveying and Mapping, 2021, 46(2): 139-145
Authors:DONG Yanfeng  HU Wusheng  YU Longfei  LONG Fengyang  ZHANG Liang
Affiliation:(School of Transportation,Southeast University,Nanjing 211189,China;Tongfang Weishi Technology Co.,Ltd.,Nanjing 210019,China)
Abstract:In the survey of urban street trees,the background environment of street scene images is complex and changeable,the street trees vary greatly,and the visual interpretation is time-consuming and laborious.Based on the panoramic image data collected by the vehicle-mounted mobile measurement system,this paper used deep learning algorithms to convolve in fast areas.Based on the neural network target detection method,a deep neural network model suitable for street view street tree detection was established.A street tree multi-example target candidate region selection method based on shared saliency regions and redundancy strategies,and the geometric constraints of the vehicle image to further filter suitable candidate regions were adapted in this paper,so as to realize the unified selection of street tree target candidate regions and improve the detection of street tree targets effect.The experimental results showed that the method proposed in this paper could realize the accurate and automatic identification and extraction of various street trees,thereby greatly reducing the cost of street tree greening investigation.
Keywords:convolutional neural network  candidate region selection  target detection  street tree
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号