首页 | 本学科首页   官方微博 | 高级检索  
     


Petrogenesis of anomalous Queen Alexandra Range enstatite meteorites and their relation to enstatite chondrites,primitive enstatite achondrites,and aubrites
Authors:Deon van Niekerk  Klaus Keil  Munir Humayun
Affiliation:1. Hawai‘i Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Manoa, , Honolulu, Hawai‘i, 96822 USA;2. National High Magnetic Field Laboratory, Department of Earth, Ocean & Atmospheric Science, Florida State University, , Tallahassee, Florida, 32310 USA
Abstract:Queen Alexandra Range (QUE) meteorite 94204 is an anomalous enstatite meteorite whose petrogenesis has been ascribed to either partial melting or impact melting. We studied the meteorite pairs QUE 94204, 97289/97348, 99059/99122/99157/99158/99387, and Yamato (Y)‐793225; these were previously suggested to represent a new grouplet. We present new data for mineral abundances, mineral chemistries, and siderophile trace element compositions (of Fe,Ni metal) in these meteorites. We find that the texture and composition of Y‐793225 are related to EL6, and that this meteorite is unrelated to the QUEs. The mineralogy and siderophile element compositions of the QUEs are consistent with petrogenesis from an enstatite chondrite precursor. We caution that potential re‐equilibration during melting and recrystallization of enstatite chondrite melt‐rocks make it unreliable to use mineral chemistries to assign a specific parent body affinity (i.e., EH or EL). The QUEs have similar mineral chemistries among themselves, while slight variations in texture and modal abundances exist between them. They are dominated by inclusion‐bearing millimeter‐sized enstatite (average En99.1–99.5) with interstitial spaces filled predominantly by oligoclase feldspar (sometimes zoned), kamacite (Si approximately 2.4 wt%), troilite (≤2.4 wt% Ti), and cristobalite. Siderophile elements that partition compatibly between solid metal and liquid metal are not enriched like in partial melt residues Itqiy and Northwest Africa (NWA) 2526. We find that the modal compositions of the QUEs are broadly unfractionated with respect to enstatite chondrites. We conclude that a petrogenesis by impact melting, not partial melting, is most consistent with our observations.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号