首页 | 本学科首页   官方微博 | 高级检索  
     


Convective energy transport in stellar atmospheres
Authors:Roger K. Ulrich
Affiliation:(1) California Institute of Technology, Pasadena, Calif., USA;(2) Present address: Department of Astronomy, University of California, Los Angeles, Calif., USA
Abstract:We discuss a theoretical method of computing the temperature structure of hot and cool streams in convective stellar atmospheres. The method is based on the model that the streams are due to organized cells whose diameters are greater than the thickness of the photosphere. The excess thermal energy of matter rising from the deeper layers, where the entropy is higher than in the photosphere, is converted to radiation in a steady front. This model, applied to the solar case, exhibits a peak-to-peak contrast of 30–40% between granules and lanes. This contrast agrees with the Stratoscope data reduced by Namba and Diemel (1969). As a necessary part of the theory, we obtain an expression for the perturbation in radiative heat exchange which may be used in a medium with a strongly preferred direction such as a stellar atmosphere.Supported in part by the National Science Foundation [GP-15911 (formerly GP-9433), GP-9114] and the Office of Naval Research [Nonr-220(47)].
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号