首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Experimental Melting of Carbonated Peridotite at 6-10 GPa
Authors:Brey  Gerhard P; Bulatov  Vadim K; Girnis  Andrei V; Lahaye  Yann
Institution:1Institut Für Geowissenschaften, J. W. Goethe-Universität, Altenhöferallee 1, D-60438 Frankfurt AM Main, Germany
2Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, UL. Kosygina 19, Moscow, 119991 Russia
3Institute for Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences, Staromonetny 35, Moscow, 119017 Russia
Abstract:Partial melting of magnesite-bearing peridotites was studiedat 6–10 GPa and 1300–1700°C. Experiments wereperformed in a multianvil apparatus using natural mineral mixesas starting material placed into olivine containers and sealedin Pt capsules. Partial melts originated within the peridotitelayer, migrated outside the olivine container and formed poolsof quenched melts along the wall of the Pt capsule. This allowedthe analysis of even small melt fractions. Iron loss was nota problem, because the platinum near the olivine container becamesaturated in Fe as a result of the reaction Fe2SiO4Ol = FeFe–Ptalloy + FeSiO3Opx + O2. This reaction led to a gradual increasein oxygen fugacity within the capsules as expressed, for example,in high Fe3+ in garnet. Carbonatitic to kimberlite-like meltswere obtained that coexist with olivine + orthopyroxene + garnet± clinopyroxene ± magnesite depending on P–Tconditions. Kinetic experiments and a comparison of the chemistryof phases occasionally grown within the melt pools with thosein the residual peridotite allowed us to conclude that the meltshad approached equilibrium with peridotite. Melts in equilibriumwith a magnesite-bearing garnet lherzolite are rich in CaO (20–25wt %) at all pressures and show rather low MgO and SiO2 contents(20 and 10 wt %, respectively). Melts in equilibrium with amagnesite-bearing garnet harzburgite are richer in SiO2 andMgO. The contents of these oxides increase with temperature,whereas the CaO content becomes lower. Melts from magnesite-freeexperiments are richer in SiO2, but remain silicocarbonatitic.Partitioning of trace elements between melt and garnet was studiedin several experiments at 6 and 10 GPa. The melts are very richin incompatible elements, including large ion lithophile elements(LILE), Nb, Ta and light rare earth elements. Relative to theresidual peridotite, the melts show no significant depletionin high field strength elements over LILE. We conclude fromthe major and trace element characteristics of our experimentalmelts that primitive kimberlites cannot be a direct productof single-stage melting of an asthenospheric mantle. They rathermust be derived from a previously depleted and re-enriched mantleperidotite. KEY WORDS: multianvil; carbonatite melt; peridotite; kimberlite; element partitioning
Keywords:: multianvil  carbonatite melt  peridotite  kimberlite  element partitioning
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号