Competitive effect of organic anions on phosphorus attenuation capacity of acid mine drainage floc |
| |
Authors: | B. S. Sekhon D. K. Bhumbla |
| |
Affiliation: | 1. Division of Plant and Soil Sciences, West Virginia University, Morgantown, 26506-6108, USA 2. Department of Soil Science, Punjab Agricultural University, Ludhiana, 141 004, India 3. American Red Cross, PO Box 37295, Washington, D.C., 20013, USA
|
| |
Abstract: | This study examines the phosphorus attenuation capacity of acid mine drainage (AMD) floc (also called ocher or sludge)—generated by neutralizing AMD with ammonia, lime, and sodium hydroxide—in the face of competition from two major organic companions, citrate and oxalate, of phosphorus in manure. Lime-treated floc (LF) was the least effective of the three flocs in attenuating both inorganic phosphorus and organic phosphorus (OP: represented by inositol hexaphosphate or phytate). Out of the remaining two flocs, ammonia-treated floc (AF) attenuated more inorganic phosphorus and less organic phosphorus than did sodium hydroxide-treated floc (SF). Increasing citrate:phosphorus molar ratio in the solution from 0:1 to 1:1 decreased the inorganic P attenuation capacity (IPAC) from 53 to 29 % in AF, 33 to 16 % in LF, and from 49 % to 27 % in SF at pH 4. The corresponding figures for organic P attenuation capacity (OPAC) were from 73 to 54 % in AF, 58 to 45 % in LF, and from 76 to 58 % in SF. Increasing oxalate:phosphorus molar ratio from 0:1 to 1:1 decreased IPAC and OPAC similarly, but to a lesser extent. The competitive influence of citrate and oxalate went on weakening with increase in pH. A likely increase in pH following prolonged manure application may undermine the competitive ability of citrate and oxalate. The study shows that manure P attenuation potential of waste of AMD treatment, notwithstanding the peer anion competition to P, warrants its effectiveness in controlling buildup of P in heavily manured soils. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|