首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Isotopic and biochemical composition of particulate organic matter in a shallow water estuary (Great Ouse, North Sea, England)
Authors:R Fichez  P Dennis  MF Fontaine  TD Jickells
Abstract:The biogeochemistry of particulate organic matter was studied in the Great Ouse estuary draining to the North Sea embayement known as the Wash from March 1990 to January 1991. Eleven locations were sampled monthly on a 50 km transect across the shallow estuary from the tidal weir to the middle of the Wash. Particulate organic carbon (POC) and total carbohydrate, protein and lipid analyses were combined with the determination of stable carbon isotopes. δ13C often increased from −30‰ in the river to −22‰ in the tidal freshwater reach. The mixing zone between fresh and marine tidal waters displayed only a slight increase in δ13C to −19‰. The change in δ13C values in the freshwater tidal reach demonstrated that mixing of riverborne and marine suspended POC was not the only process affecting the carbon stable isotope composition. Complementary sources, interfering considerably with the two end-member sources, may be identified as autocthonous primary production and resuspension of sediment that may be transported upstream. The respective importance of these sources is subject to seasonal variation. From March to August, high concentrations in carbohydrate and protein through the whole estuary indicate that despite turbidity significant primary production occurred. The proportional importance of the uncharacterized fraction of POC, which is considered as complex organic matter, was high from September to January and low from March to August. During most of the year, the biochemical compositions of particulate organic matter in the turbidity maximum and the rest of the estuary were similar. This contradicted the principle that owing to the long residence times of particles degradation processes largely dominate the production processes within the turbidity maximum. The occurence of significant in situ production in such shallow water estuaries may partially compensate for the degradation of suspended particulate organics, resulting in a complex relationship between the biogeochemical cycling and the fate of nutrients.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号