首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Upscaling hydraulic conductivity based on the topology of the sub-scale structure
Authors:A Samouëlian  H-J Vogel  O Ippisch
Institution:1. Institute of Environmental Physics, University of Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany;2. INRA, UR0272 Science du Sol, Centre de recherche d’Orléans, BP 20619, F-45166 Olivet cedexs, France;3. UFZ – Helmholtz Centre for Environmental Research, Department of Soil Physics, Theodor-Lieser-Strasse 4, 06120 Halle, Germany;4. Interdisciplinary Center for Scientific Computing, University of Heidelberg, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany;5. Institute for Parallel and Distributed Systems, University of Stuttgart, Universitätsstraße 38, 70569 Stuttgart, Germany
Abstract:The hydraulic conductivity of heterogeneous porous media depends on the distribution function and the geometry of local conductivities at the smaller scale. There are various approaches to estimate the effective conductivity Keff at the larger scale based on information about the small scale heterogeneity. A critical geometric property in this ‘upscaling’ procedure is the spatial connectivity of the small-scale conductivities. We present an approach based on the Euler-number to quantify the topological properties of heterogeneous conductivity fields, and we derive two key parameters which are used to estimate Keff. The required coefficients for the upscaling formula are obtained by regression based on numerical simulations of various heterogeneous fields. They are found to be generally valid for various different isotropic structures. The effective unsaturated conductivity function Keff (ψm) could be predicted satisfactorily. We compare our approach with an alternative based on percolation theory and critical path analysis which yield the same type of topological parameters. An advantage of using the Euler-number in comparison to percolation theory is the fact that it can be obtained from local measurements without the need to analyze the entire structure. We found that for the heterogeneous field used in this study both methods are equivalent.
Keywords:Porous media  Effective hydraulic properties  Hydraulic conductivity  Unsaturated flow  Upscaling  Topology  Connectivity  Heterogeneous structure
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号