首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The impact of various methods of wave transfers from deep water to nearshore when determining extreme beach erosion
Institution:1. GeM, UMR CNRS 6183, École Centrale de Nantes, 1 rue de la Noë, 44321 Nantes, France;2. IMSIA, UMR CNRS 9219, EdF, Av. Charles de Gaulle, 92141 Clamart, France;3. LFC-R UMR5150, Université de Pau et des Pays de l’Adour, Allée du Parc Montaury, F64600 Anglet, France;1. University of Florida, Department of Civil and Coastal Engineering, P.O. 116580, Gainesville, FL 32611, USA;2. United States Army Corps of Engineers, Risk Management Center, 696 Virginia Road, Concord, MA 01742, USA
Abstract:Several levels of increasing complexity of transferring wave information from offshore to nearshore have been studied to quantify their influence on extreme beach erosion estimates. Beach profiles which have been monitored since 1976 were used to estimate extreme beach erosion and compared to predictions. Examination of the wave propagation assumptions revolves around two types of offshore to nearshore transfer: excluding or including wave breaking and bottom friction. A second complication is whether still water level variations (ocean tide plus storm surge) are included.The inclusion of various combinations of wave propagation processes other than shoaling and refraction in the wave transfer function changes on the extreme erosion distribution tail through lowering estimates above one year return period. This brings the predicted tails closer to the observations, but does not capture the upper limit of storm demand implied by the extensive beach profile data set. Including wave breaking has a marked effect on probabilistic estimates of beach erosion. The inclusion of bottom friction is less significant. The inclusion of still water level variability in the wave transfer calculation had minimal impact on results for the case study site, where waves were transferred from offshore to water at 20 m depth. These changes were put into perspective by comparing them to changes resulting from limiting beach erosion by adjusting the statistical distributions of peak wave height and storm duration to have maximum limits. We conclude that the proposed improvements on wave transformation methods are as significant as limiting wave erosion potential and worth including.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号