Abstract: | A neural network with two hidden layers is developed to forecast typhoon rainfall. First, the model configuration is evaluated using eight typhoon characteristics. The forecasts for two typhoons based on only the typhoon characteristics are capable of showing the trend of rainfall when a typhoon is nearby. Furthermore, the influence of spatial rainfall information on rainfall forecasting is considered for improving the model design. A semivariogram is also applied to determine the required number of nearby rain gauges whose rainfall information will be used as input to the model. With the typhoon characteristics and the spatial rainfall information as input to the model, the forecasting model can produce reasonable forecasts. It is also found that too much spatial rainfall information cannot improve the generalization ability of the model, because the inclusion of irrelevant information adds noise to the network and undermines the performance of the network. Copyright © 2005 John Wiley & Sons, Ltd. |