首页 | 本学科首页   官方微博 | 高级检索  
     检索      

基于SEM-EDS及GC-MS技术研究有机氯分子结构对零价铜脱氯机制的影响
引用本文:朱洪,刘静,焦晗涛,张晶,段江涛,连兴业,侯亚楠.基于SEM-EDS及GC-MS技术研究有机氯分子结构对零价铜脱氯机制的影响[J].岩矿测试,2015,34(2):169-175.
作者姓名:朱洪  刘静  焦晗涛  张晶  段江涛  连兴业  侯亚楠
作者单位:北京农学院生物科学与工程学院, 北京 102206,北京农学院生物科学与工程学院, 北京 102206,北京农学院生物科学与工程学院, 北京 102206,北京农学院生物科学与工程学院, 北京 102206,北京农学院生物科学与工程学院, 北京 102206,北京农学院生物科学与工程学院, 北京 102206,北京农学院生物科学与工程学院, 北京 102206
基金项目:北京农学院促进人才培养综合改革专项计划(BNRC&YX201412);国家自然基金青年基金项目(21207077)
摘    要:零价铜作为一种廉价金属很少应用于促进氯代有机物脱氯研究,其原因是零价铜的催化还原脱氯活性差,且反应机制复杂。本文采用机械球磨技术制备了Cu-Fe和Cu-Ni合金,研究零价铜在不同微观环境下对对氯苯酚(4-CP)的脱氯行为,旨在考察有机氯分子结构对零价铜脱氯机制的影响。应用扫描电镜-能谱(SEM-EDS)及色相色谱-质谱(GC-MS)分析发现,铜原子的微环境及有机氯分子结构均影响铜的脱氯机制。在Cu-Fe体系中,Cu遵循经典的催化加氢脱氯机制,4-CP的降解产物为苯酚;Cu-Ni体系的还原作用来源于零价铜,其中的镍金属并未起到催化加氢作用,Cu-Ni合金及单独零价铜对4-CP的降解产物是环己酮。零价铜对4-CP的降解率可达70%以上,而Cu-Fe体系的降解率仅为34%,两者对芳香族氯代物的降解效率差距显著。零价铜能够降解化学稳定性高的4-CP和苯酚,但不能降解化学稳定性相对较差的脂肪族氯代有机物(如一氯乙酸和二氯乙酸),因此认为零价铜脱氯机制并非传统的催化加氢机制,而是遵循直接电子传递还原机制,且有机氯分子的苯环结构是零价铜直接电子传递还原的诱因。

关 键 词:氯代有机污染物  零价铜  铜系合金  脱氯机制  机械球磨  扫描电镜-能谱(SEM-EDS)  气相色谱-质谱法(GC-MS)
收稿时间:2014/2/18 0:00:00
修稿时间:2015/3/19 0:00:00

Effect of Molecular Structure in Chlorinated Organic Compounds on Zero-valent Copper Degradation Mechanism Based on SEM-EDS and GC-MS Techniques
ZHU Hong,LIU Jing,JIAO Han-tao,ZHANG Jing,DUAN Jiang-tao,LIAN Xing-ye and HOU Ya-nan.Effect of Molecular Structure in Chlorinated Organic Compounds on Zero-valent Copper Degradation Mechanism Based on SEM-EDS and GC-MS Techniques[J].Rock and Mineral Analysis,2015,34(2):169-175.
Authors:ZHU Hong  LIU Jing  JIAO Han-tao  ZHANG Jing  DUAN Jiang-tao  LIAN Xing-ye and HOU Ya-nan
Institution:College of Biological Science and Engineering, Beijing University of Agriculture, Beijing 102206, China,College of Biological Science and Engineering, Beijing University of Agriculture, Beijing 102206, China,College of Biological Science and Engineering, Beijing University of Agriculture, Beijing 102206, China,College of Biological Science and Engineering, Beijing University of Agriculture, Beijing 102206, China,College of Biological Science and Engineering, Beijing University of Agriculture, Beijing 102206, China,College of Biological Science and Engineering, Beijing University of Agriculture, Beijing 102206, China and College of Biological Science and Engineering, Beijing University of Agriculture, Beijing 102206, China
Abstract:Zero-valent copper, even cheap, is rarely used in hydrodechlorination (such as chlorinated aromatic hydrocarbons), because Cu has poor catalytical dechlorination activity and complex reaction mechanisms. In this study, Cu-Fe and Cu-Ni alloys were prepared by mechanical ball-milling, and the effect of micro-environment for the chlorophenol (4-CP) dechlorination behavior of Cu was studied in order to investigate the effect of organic chlorine molecular structure on Cu dechlorination. Two reaction mechanisms were examined for low-cost copper during dechlorination. SEM-EDS and GC-MS analyses show that the structure of organic chlorine and Cu metal environment could directly affect the mechanism. In the Cu-Fe system, Cu follows the classic catalytic hydrodechlorination mechanism and the degradation product 4-CP is phenol. But in the Cu-Ni system, nickel metal does not play a catalytic hydrogenation of action, the degraded product for 4-CP by Cu-Ni alloy is cyclohexanone. Copper acts as hydrogen-metal and shows a strong reducing activity by direct electron transfer. 4-CP degradation for Zero-valent copper was up to 70%, while only 34% for Cu-Fe system. These differences concluded that the aromatic ring was a direct electron transfer for Cu. Zero-valent copper can degrade 4-CP and phenol with high chemical stability, but cannot degrade aliphatic chlorinated organics (e.g., monochloroacetic acid and dichloroacetic acid) with relatively poor chemical stability. In conclusion, dechlorination mechanism for zero-valent copper is not traditional catalytic hydrodechlorination, but the direct electron transfer reduction mechanism which is affected by target molecule structure.
Keywords:chlorinated organic compounds  zero-valent copper  copper alloy  degradation mechanism  mechanical ball milling  Scanning Electron Microscopy-Energy-dispersive Spectrometry (SEM-EDS)  Gas Chromatography-Mass Spectrometry (GC-MS)
本文献已被 CNKI 等数据库收录!
点击此处可从《岩矿测试》浏览原始摘要信息
点击此处可从《岩矿测试》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号