首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The mechanics of a magma chamber-fault system in trans-tension with application to Coso
Authors:Alexander G Simakin  Ahmad Ghassemi  
Institution:aDepartment of Petroleum Engineering, Texas A&M University, College Station, TX 77843, USA
Abstract:The mechanical interaction between an elliptically shaped magma chamber and a fault subject to transtension is investigated with particular reference to the Coso geothermal field. The geologic setting of the Coso field is interpreted as a releasing bend step-over structure formed by the Airport Lake and Owens Valley dextral strike-slip fault system. The role of the Coso volcano-magmatic center in the development of the “over-step” structure is examined by treating the magma chamber as a liquid inclusion in a viscoelastic crust containing a fault (Airport Lake). The problem is numerically solved using a 2D viscoelastic finite element model with thermally activated viscosity to account for thermal weakening of the rock. The temperature distribution around the magma body is calculated based on a 3D steady-state approach and using the mesh-less numerical method. The fault is modeled as a frictionless contact. The simulated distributions of stress and strain around the inclusion display a rotation caused by the shearing component of the applied transtension. The results indicate that the fault tends to overstep the chamber in a geometric pattern similar to a step-over. There is good correspondence between the computed distributions of the maximum shear stress in the vicinity of the magma chamber and the map of earthquake epicenters at a depth of 7–10 km in Coso.
Keywords:Coso  Inclusion  Magma chamber  Stepover  Transtension  Thermally activated viscosity  Viscoelasticity  Strain weakening
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号