首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical modelling of dyke interaction and its influence on oceanic crust formation
Authors:D. Kü  hn,T. Dahm
Affiliation:aInstitute of Geophysics, University of Hamburg, Bundesstr.55, 20146 Hamburg, Germany
Abstract:Dykes are an essential element in building oceanic crust, most prominent in sheeted dyke complexes in the upper crust. Since dykes alter the magnitude and orientation of the local stress field, they cannot be treated as passive infillings of extensional fractures.We use a quasi-static, iterative 2-D boundary element method allowing for a wholesale movement of fluid-filled fractures. Effects of stress and pressure gradients, buoyancy and enclosed fluid mass are considered. The implications of the dyke-induced stress field are analysed combining the simulation of fracture propagation with computation of dyke interaction. Dyke interaction occurs by the adaptation of ascending dykes to the stress field caused by previous fractures arrested in the crust and leads to focussing and crossing of dykes. Examples for applications are introduced, concerning e.g. the generation of a magma chamber and the formation of the sheeted dyke complex. Our main results are that the interaction between dykes can be considerable and that the most important controlling factor is stress. The interaction is small when the horizontal tensional stress is large compared to the pressure in the dyke head. Otherwise, dykes tend to attract each other and to form centres of high dyke density or sill layers.
Keywords:Magma ascent   Fracture propagation   Dyke interaction   Mid-ocean ridge   Oceanic crust formation   Sheeted dyke complex
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号