首页 | 本学科首页   官方微博 | 高级检索  
     


Sub-seasonal interannual variability associated with the excess and deficit Indian winter monsoon over the Western Himalayas
Authors:A. P. Dimri
Affiliation:1. School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
Abstract:During the winter season (Dec., Jan., and Feb.; DJF) the western Himalaya (WH) receives one-third of its annual precipitation due to Indian winter monsoon (IWM). The IWM is characterized by eastward-moving synoptic weather systems called western disturbances. Seasonal interannual precipitation variability is positively correlated with monthly interannual variabilities. However, it was found that the monthly interannual variabilities differ. The interannual variability for Jan. is negatively correlated with that for Dec. and Feb. Because the entire seasonal interannual variability is in phase with the El Niño Southern Oscillation, it is interesting to investigate such contrasting behavior. Composite analysis based on extreme wet and dry seasons indicates that Dec. and Feb. precipitation variabilities have a high positive (low negative) correlation with eastern (western) equatorial Pacific warming (cooling), whereas Jan. precipitation variability exhibits negligible correlations. Seasonal mid/upper tropospheric cooling over the Himalayas enhances anomalous cyclonic circulation, which along with suppressed convection over the western equatorial Pacific, shifts the 200-hPa subtropical westerly jet southward over the Himalayas. Due to the upper tropospheric anomalous cyclonic circulation, mass transfer favors anticyclone formation at the mid/lower troposphere, which is enhanced in Jan. due to a warmer mid troposphere and hence decreases precipitation compared with Dec. and Feb. Additionally, a weakening of meridional moisture flux transport from the equatorial Indian Ocean to WH is observed in Jan. Further analysis reveals that mid-tropospheric and surface temperatures over WH also play dominant roles, acting as local forcing where the preceding month’s surface temperature controls the succeeding month’s precipitation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号