首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A structural phase-transition in K(Mg1−xCux)F3 perovskite
Authors:Peter C Burns  Frank C Hawthorne  Anne M Hofmeister  Stephanie L Moret
Institution:1. Department of Geological Sciences, University of Manitoba, R3T 2N2, Winnipeg, Manitoba, Canada
3. Department of Earth and Planetary Sciences, Washington University in St. Louis, Campus Box 1169, 63130-4899, St. Louis, MO, USA
4. Department of Geosciences, Oregon State University, 97331-5506, Corvallis, OR, USA
Abstract:A complete solid-solution series between cubic (Pm 3 m) KMgF3 and tetragonal (I4/mcm) KCuF3 was synthesized at 730–735 °C in an inert atmosphere. X-ray powder-diffraction at room temperature shows that the transition between the cubic and tetragonal perovskite structures in the series K (Mg1?xCux) F3 occurs at x ~ 0.6. Rietveld structure-refinements were done for selected compositions. In the cubic phase, all parameters are linear with composition up to the transition point. At the transition point, there is a strong discontinuity in the cell volume; this is strongly anisotropic with expansion along the a axes and contraction along the c axis due to a pronounced axial elongation of the (Mg, Cu) F6 octahedron that increases with increasing Cu content. The phase transition is first-order, with a discontinuity of ≈2% in the symmetry-breaking strain at xC. It is proposed that the phase transition in K (Mg, Cu) F3 is due to the onset of the cooperative Jahn-Teller effect. Compositional relationships for lattice vibrations in this solid solution were established using thin-film infrared spectroscopy. A phase transition occurring above 60 mole % KCuF3 is indicated by the appearance of one of the two modes expected for the tetragonal phase; the weaker mode is not resolved below 80 mole % KCuF3. Modes common to both structures vary smoothly and continuously across the binary; however, frequencies do not depend linearly on composition, nor is mode-softening discernable. Two-mode behaviour is observed only for the bending motion of the cubic phase, because this peak alone has non-overlapping end-member components.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号