首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Deep sea explosive activity on the Mid-Atlantic Ridge near 34°50′N: Magma composition, vesicularity and volatile content
Authors:R Hekinian  F Pineau  S Shilobreeva  D Bideau  E Gracia  M Javoy
Abstract:Submersible observations and sampling were carried out in the rift valley of the Mid-Atlantic Ridge (MAR) near 34°40′N–35°N. The 4-km-wide rift valley consists of a Neo Volcanic Zone (NVZ) (<1 km wide) bounded at the west by a Median Ridge (MR) (5 km wide and 20 km long) and at the east by the first scarps of the eastern wall. The MR and the eastern wall are characterized by volcanic cones about 200–300 m height culminating at depths of 1500–1900 m which are made up of volcaniclastic deposits (pyroclasts and hyaloclasts) suggestive of explosive volcanism. Based on their surface morphology, degree of vesicularity, and composition, the erupted deposits are classified into four groups: (1) poorly vesicular (<15% vesicles) N- and T-MORBs (K/Ti <0.25, Na2O+K2O<2.9%) consisting of sheet flows and pillows formed during fissure eruptions in the NVZ at 2000–2300 m depths; (2) vesicular (15–30% vesicles) E-MORBs (K/Ti=0.25−0.45,Na2O+K2O>2.8−3.2%) and alkali basalts (K/Ti=0.45−0.70,Na2O+K2O>3.3−4) made up mainly of pillows; (3) highly vesicular (>35% vesicles) pillow lava and pyroclastic (scoria-like) alkali basalts (K/Ti>0.45−0.80,Na2O+K2O>3−4%); and (4) hyaloclastites consisting of glassy shards of alkali basalt composition. The total water and carbon contents of the deposits increase with the incompatible element concentrations. The estimated initial H2O content for the N- and T-MORBs is less than 3500 ppm, whereas for the E-MORBs and alkali basalts the H2O content is near 4000 and 7000 ppm, respectively. While the H2O is mainly in the melt, the carbon is in the form of CO2 filling vesicles. The vesicles are formed from magma with an initial carbon content of 1000–3000 for the N- and T-MORBs, 3000–6500 ppm for the E-MORBs and higher than 1 wt% for the alkali basalts.The various lava types were derived from a heterogeneous mantle source composed of enriched and depleted components during sequential eruptions of N-, T- and E-MORBs and alkali basalts (K/Ti>0.7). The amount of CO2 and H2O in equilibrium with the dissolved species present in the vesicles indicates that CO2 (XCO2=1−0.84) was the main exsolved compound responsible for bubble nucleation. The increase in the degree of vesicularity and pressure of the volatile phases is mainly due to the early exsolution of CO2 from an alkali melt. The exsolution of significant amounts of dissolved water occurred only for the alkali basalt a few hundred meters beneath the seafloor and contributed to late bubble expansion. This subsequent addition of magmatic water to the vesicles increased the gas pressure and triggered explosions. An alternative hypothesis for the explosive volcanism is based on field observations. During crater collapsed, seawater could have been trapped in fractured volcanic conduits and later sealed by hydrothermal fluid circulation and precipitation. In such an environment, this seawater will be heated and vaporized during renewed magmatic upwelling. Both scenarios give rise to fragmented debris (hyaloclasts and pyroclasts) and the explosive events create turbulent flows followed by differential gravity settling of the particles (shards versus lapilli) through the seawater.
Keywords:mid-ocean ridge  volcanism  petrology and volatile geochemistry
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号