首页 | 本学科首页   官方微博 | 高级检索  
     

海底热流长期观测系统研制进展
引用本文:杨小秋, 曾信, 石红才, 于传海, 施小斌, 郭兴伟, 王迎春, 任自强, 邵佳, 许鹤华, 卫小冬, 陈顺, 赵鹏, 庞忠和. 2022. 海底热流长期观测系统研制进展. 地球物理学报, 65(2): 427-447, doi: 10.6038/cjg2022P0190
作者姓名:杨小秋  曾信  石红才  于传海  施小斌  郭兴伟  王迎春  任自强  邵佳  许鹤华  卫小冬  陈顺  赵鹏  庞忠和
作者单位:中国科学院边缘海与大洋地质重点实验室,南海海洋研究所,南海生态环境工程创新研究院,广州 511458;南方海洋科学与工程广东省实验室(广州),广州 511458;中山大学大气科学学院海洋科学考察中心,广东珠海 519082;广东海洋大学,陆架及深远海气候、资源与环境广东省高等学校重点实验室,广东湛江524088;中国地质调查局青岛海洋地质研究所,山东青岛 266071;成都理工大学能源学院,成都610059;长江三峡勘测研究院有限公司(武汉),武汉430074;自然资源部海底科学重点实验室,自然资源部第二海洋研究所,杭州 310012;中国科学院地质与地球物理研究所,北京 100029
基金项目:南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项(GML2019ZD0104);国家自然科学基金项目(41874099,41430319,42130809,41106086,U20A20100,41704085,41766001);中国科学院科研装备研制项目(YZ201136);国家重点研发计划重点专项(2021YFC3100604)资助。
摘    要:

浅海和俯冲海沟等海域,不仅是矿产和油气资源主潜力区,也是构造地震频发区,其浅表热流和深部温度信息对于了解板块俯冲和岩浆活动等过程至关重要.这些区域浅层地温场和热流场受到底水温度波动(BTV)强烈扰动,其背景热流需由长期观测来获取.在全面分析了国内外海底热流长期观测技术特点后,我们提出了系缆式海底热流长期观测方案,2013年起陆续开展了部分核心技术的预研究及一系列海底、湖底及浅孔试验.结果表明:(1)自主研制的长周期低功耗微型测温单元,在2~36℃的环境下可连续观测1年;系缆式投放与回收方案即使在地形陡峭、1.5 kn流速及无动力定位等条件下仍然可行.(2)南海北部BTV总体随水深变浅而增强,在浅水区对浅层地温场扰动不可忽略.例如,在水深2600~3200 m和850~1200 m海域分别为0.025~0.053℃(17天内)、0.182~0.417℃(2天内),而台西南盆地北坡(水深763 m)夏季的海底热流由浅表的0.69 W·m-2转变为0.83 m以深的-0.25~-0.05 W·m-2.(3)兴伊措和湖光岩玛珥湖BTV向深部传导过程中其幅度逐渐减弱、相位滞后,进而导致热流方向与强度随季节发生变化.而康定中谷浅层(7 m内)地温在不同深度处同步波动,且冬高(35~36℃)夏低(28~32℃).推测为夏季大量降雨所致;其热流浅部低(0.504 W·m-2)深部高(0.901 W·m-2),指示着鲜水河断裂带深部热流体上涌.这些预研究工作为后续系缆式海底热流长期观测系统的正式研制与应用奠定了扎实基础.



关 键 词:海底热流  底水温度波动  长期观测  低功耗  高稳定性测温技术  南海  兴伊措  鲜水河断裂带  康定浅孔  湖光岩玛珥湖
收稿时间:2021-03-24
修稿时间:2021-12-22

Development progress of long-term seafloor heat flow monitoring system
YANG XiaoQiu, ZENG Xin, SHI HongCai, YU ChuanHai, SHI XiaoBin, GUO XingWei, WANG YingChun, REN ZiQiang, SHAO Jia, XU HeHua, WEI XiaoDong, CHEN Shun, ZHAO Peng, PANG ZhongHe. 2022. Development progress of long-term seafloor heat flow monitoring system. Chinese Journal of Geophysics (in Chinese), 65(2): 427-447, doi: 10.6038/cjg2022P0190
Authors:YANG XiaoQiu  ZENG Xin  SHI HongCai  YU ChuanHai  SHI XiaoBin  GUO XingWei  WANG YingChun  REN ZiQiang  SHAO Jia  XU HeHua  WEI XiaoDong  CHEN Shun  ZHAO Peng  PANG ZhongHe
Affiliation:1. Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 511458, China; 2. Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; 3. Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Guangdong Ocean University, Guangdong Zhanjiang 524088, China; 4. Qingdao Institute of Marine Geology, China Geological Survey, Shandong Qingdao 266071, China; 5. College of Energy Resources, Chengdu University of Technology, Chengdu 610059, China; 6. Three Gorges Geotechnical Consultants Co., Ltd., Wuhan 430074, China; 7. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; 8. Key Laboratory of Submarine Geosciences & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; 9. Center of Ocean Expedition, School of Atmospheric Science, Sun Yat-sen University, Guangdong Zhuhai 519082, China
Abstract:The shallow seas and subduction trenches are not only the main potential areas for mineral and hydrocarbon resource, but also areas of frequent tectonic earthquakes. The shallow heat flow and deep temperature distribution are crucial for understanding the process of plate subduction and magma activity. In these areas, the shallow temperature and heat flow fields are strongly disturbed by the bottom water temperature variation (BTV). Thus, its background heat flow needs to be obtained by long-term observation. After a comprehensive analysis of the technical characteristics of the existing long-term seafloor heat flow observation techniques, we proposed a scheme for tethered long-term seafloor heat flow monitoring system (TLHF), and since 2013, carried out a series of pre-developments and tests in the South China Sea, Xingycou Lake, Huguangyan Maar Lake, and Kangding shallow borehole in the Xianshuihe fault zone. The results show: (1) the self-developed long-period and low-power miniature temperature loggers can continuously work for one year in an environment of 2~36℃. The tethering-type launch and recovery scheme is still feasible even under the conditions of steep terrain, 1.5 knots of velocity and without dynamic positioning. (2) In northern South China Sea, the BTV generally increases as the water depth becomes shallower, whose disturbance to the shallow temperature field cannot be ignored in shallow area. For example, the BTV is only 0.025~0.053℃ during 17 days in Dongsha waters with a depth of 2600~3200 m but up to 0.182~0.417℃ within 2 days in Xisha waters with a depth of 850~1200 m. In summer, the seafloor heat flow on the northern slope of the Taixinan Basin (with a water depth of 763 m) from 0.69 W·m-2 at the shallow surface to -0.25~-0.05 W·m-2 at a depth of 0.83 m. (3) In Xingycou Lake and Huguangyan Maar Lake, the BTV amplitude gradually decreases and the phase lags during the process of conduction to the deep. That causes the intensity and direction of the heat flow to vary with change of seasons. In Zhonggu Village of Kangding City, the shallow ground temperature is high to 35~36℃ in winter but low to 28~32℃ in summer due to heavy rainfall in summer, and fluctuates synchronously at different depths. The surface heat flow is 0.504 W·m-2 at the depth of 3~5 m, and rises to 0.901 W·m-2 at the depth of 5~7 m. That indicates the upwelling of thermal fluid from the deep part of the Xianshuihe fault zone. These preliminary work has laid a solid foundation for the development and application of the TLHF system.
Keywords:Seafloor heat flow  Bottom water temperature variation(BTV)  Long-term observation  Low power consumption  High stability temperature measurement technique  South China Sea  Xingycou Lake  Xianshuihe fault zone  Shallow borehole in Kangding  Huguangyan Maar Lake
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《地球物理学报》浏览原始摘要信息
点击此处可从《地球物理学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号