首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An upscaling approach using adaptive multi-resolution upgridding and automated relative permeability adjustment
Authors:Niloofar Misaghian  Mehdi Assareh  MohammadTaqi Sadeghi
Institution:1.School of Chemical Engineering,Iran University of Science and Technology,Tehran,Iran
Abstract:The upscaling process of a high-resolution geostatistical reservoir model to a dynamic simulation grid model plays an important role in a reservoir study. Several upscaling methods have been proposed in order to create balance between the result accuracy and computation speed. Usually, a high-resolution grid model is upscaled according to the heterogeneities assuming single phase flow. However, during injection processes, the relative permeability adjustment is required. The so-called pseudo-relative permeability curves are accepted, if their corresponding coarse model is a good representation of the fine-grid model. In this study, an upscaling method based on discrete wavelet transform (WT) is developed for single-phase upscaling based on the multi-resolution analysis (MRA) concepts. Afterwards, an automated optimization method is used in which evolutionary genetic algorithm is applied to estimate the pseudo-relative permeability curves described with B-spline formulation. In this regard, the formulation of B-spline is modified in order to describe the relative permeability curves. The proposed procedure is evaluated in the gas injection case study from the SPE 10th comparative solution project’s data set which provides a benchmark for upscaling problems 1]. The comparisons of the wavelet-based upscaled model to the high-resolution model and uniformly coarsened model show considerable speedup relative to the fine-grid model and better accuracy relative to the uniformly coarsened model. In addition, the run time of the wavelet-based coarsened model is comparable with the run time of the uniformly upscaled model. The optimized coarse models increase the speed of simulation up to 90% while presenting similar results as fine-grid models. Besides, using two different production/injection scenarios, the superiority of WT upscaling plus relative permeability adjustment over uniform upscaling and relative permeability adjustment is presented. This study demonstrates the proposed upscaling workflow as an effective tool for a reservoir simulation study to reduce the required computational time.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号