首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Surrogate-based parameter inference in debris flow model
Authors:Maria Navarro  Olivier P Le Maître  Ibrahim Hoteit  David L George  Kyle T Mandli  Omar M Knio
Institution:1.Computer, Electrical and Mathematical Sciences and Engineering Division,King Abdullah University of Science and Technology,Thuwal,Saudi Arabia;2.LIMSI-CNRS,Orsay Cedex,France;3.Physical Sciences and Engineering Division,King Abdullah University of Science and Technology,Thuwal,Saudi Arabia;4.U.S. Geological Survey,Vancouver,USA;5.Department of Applied Physics and Applied Mathematics,Columbia University in the City of New York,New York,USA
Abstract:This work tackles the problem of calibrating the unknown parameters of a debris flow model with the drawback that the information regarding the experimental data treatment and processing is not available. In particular, we focus on the evolution over time of the flow thickness of the debris with dam-break initial conditions. The proposed methodology consists of establishing an approximation of the numerical model using a polynomial chaos expansion that is used in place of the original model, saving computational burden. The values of the parameters are then inferred through a Bayesian approach with a particular focus on inference discrepancies that some of the important features predicted by the model exhibit. We build the model approximation using a preconditioned non-intrusive method and show that a suitable prior parameter distribution is critical to the construction of an accurate surrogate model. The results of the Bayesian inference suggest that utilizing directly the available experimental data could lead to incorrect conclusions, including the over-determination of parameters. To avoid such drawbacks, we propose to base the inference on few significant features extracted from the original data. Our experiments confirm the validity of this approach, and show that it does not lead to significant loss of information. It is further computationally more efficient than the direct approach, and can avoid the construction of an elaborate error model.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号