Pre‐Glacial Landform Inheritance in a Glaciated Shield Landscape |
| |
Authors: | Adrian M. Hall Karin Ebert Clas Hättestrand |
| |
Affiliation: | 1. School of Geography and Geosciences, University of St Andrews, , St Andrews, Scotland;2. Department of Physical Geography and Quaternary Geology, Stockholm University, , Stockholm, Sweden |
| |
Abstract: | We seek to quantify glacial erosion in a low relief shield landscape in northern Sweden. We use GIS analyses of digital elevation models and field mapping of glacial erosion indicators to explore the geomorphology of three granite areas with the same sets of landforms and of similar relative relief, but with different degrees of glacial streamlining. Area 1, the Parkajoki district, shows no streamlining and so is a type area for negligible glacial erosion. Parkajoki retains many delicate pre‐glacial features, including tors and saprolites with exposure histories of over 1 Myr. Area 2 shows the onset of significant glacial erosion, with the development of glacially streamlined bedrock hills. Area 3 shows extensive glacial streamlining and the development of hill forms such as large crag and tails and roches moutonnées. Preservation of old landforms is almost complete in Area 1, due to repeated covers of cold‐based, non‐erosive ice. In Area 2, streamlined hills appear but sheet joint patterns indicate that the lateral erosion of granite domes needed to form flanking cliffs and to give a streamlined appearance is only of the order of a few tens of metres. The inheritance of large‐scale, pre‐glacial landforms, notably structurally controlled bedrock hills and low relief palaeosurfaces, remains evident even in Area 3, the zone of maximum glacial erosion. Glacial erosion here has been concentrated in valleys, leading to the dissection and loss of area of palaeosurfaces. Semi‐quantitative estimates of glacial erosion on inselbergs and palaeosurfaces and in valleys provide mean totals for glacial erosion of 8 ± 8 m in Area 1 and 27 ± 11 m in Area 3. These estimates support previous views that glacial erosion depths and rates on shields can be low and that pre‐glacial landforms can survive long periods of glaciation, including episodes of wet‐based flow. |
| |
Keywords: | GIS analysis inselberg palaeosurface glacial erosion shield granite |
|
|