首页 | 本学科首页   官方微博 | 高级检索  
     

一次梅雨锋暴雨的边界层热通量输送与湍流动能收支分析
引用本文:马铮,沈新勇,黄文彦,李小凡,冯涛. 一次梅雨锋暴雨的边界层热通量输送与湍流动能收支分析[J]. 气象科学, 2017, 37(6): 753-765
作者姓名:马铮  沈新勇  黄文彦  李小凡  冯涛
作者单位:南京信息工程大学 气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心, 南京 210044;沈阳中心气象台, 沈阳 110016,南京信息工程大学 气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心, 南京 210044;中国科学院 大气物理研究所云降水物理与强风暴重点实验室, 北京 100029,常州市气象局, 江苏 常州 213022,浙江大学 地球科学学院, 杭州 310027,南京大学 中国气象局-南京大学气候预测研究联合实验室, 气候与全球变化研究所, 南京 210023
基金项目:科技部国家大气污染专项项目(2016YFC0203301);国家重点基础研究发展计划(973计划)项目(2015CB453201;2013CB430103);国家自然科学基金资助项目(41375058;41530427;41475039;41405067);江苏省自然科学基金重点资助项目(BK20150062)
摘    要:利用中尺度WRF模式对于2007年7月一次典型的梅雨锋暴雨过程进行了高分辨率数值模拟,对于边界层内的热通量输送和湍流动能的时空变化特征,以及湍流动能各收支项的分布及变化特征进行了分析。结果表明,降水发生时段内边界层热通量和湍流动能的时空分布特征与晴空日变化特征表现出显著不同,潜热通量随高度自下而上呈现"正—负—正"的分布,感热通量以负值为主,负值中心高度与潜热通量由负转正的高度相对应,湍流动能的发展高度与持续时间都有所增加,降水区近地面湍流动能弱于其他区域,但是在468 m以上高度则显著强于其他区域。降水区湍流动能的来源主要是平均风切变所产生的机械湍流,浮力作用与粘性耗散在降水期间消耗湍流动能,湍流输送作用将低层的湍流动能输送至较高的高度,使低层减小而高层增大,临界高度与湍流动能的大值中心高度对应。

关 键 词:梅雨锋暴雨  边界层  热通量  湍流动能
收稿时间:2016-11-12
修稿时间:2017-01-12

Analysis of heat flux transfer and TKE budget in the boundary layer during a Meiyu rainstorm
MA Zheng,SHEN Xinyong,HUANG Wenyan,LI Xiaofan and FENG Tao. Analysis of heat flux transfer and TKE budget in the boundary layer during a Meiyu rainstorm[J]. Journal of the Meteorological Sciences, 2017, 37(6): 753-765
Authors:MA Zheng  SHEN Xinyong  HUANG Wenyan  LI Xiaofan  FENG Tao
Affiliation:Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China;Shenyang Central Meteorological Observatory, Shenyang 110016, China,Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China;Key Laboratory of Cloud-PrecipitationPhysics and Severe Storms, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China,Changzhou Meteorological Bureau, Jiangsu Changzhou, 213022, China,School of Earth Sciences, Zhejiang University, Hangzhou 310027, China and China Meteorological Administration Nanjing University Joint Laboratory for Climate Prediction Studies, Institute for Climate and Global Change Research, Nanjing University, Nanjing 210023, China
Abstract:A heavy rainfall caused by Meiyu front during July,2007 is simulated by high-resolution mesoscale WRF model to analyze the characteristics of heat flux transportation and Turbulent Kinetic Energy(TKE) in the boundary layer during the event. Results show that the temporal and spatial distribution of heat flux and TKE are different from diurnal change characteristics during the rainstorm event. Latent heat flux appears to be positive-negative-positive as the height above ground grows, while sensible heat flux is mostly minus, with the height of negative center corresponding with that of latent heat changing from negative to positive. The height and duration of the development of TKE increased during the event, with the TKE in the precipitation zone is weaker than in other areas in the near-surface but stronger at 468 m or higher levels. The development of TKE in the precipitation zone transferred mainly from mechanical turbulence generated by shear of the average wind, while buoyancy and viscidity dissipation make the consumption. Turbulent transportation transfers TKE from near-surface to higher levels, contributing to the TKE at upper levels while decreasing TKE at lower levels. The critical height between the negative effect and the positive corresponds to the height of the maximum center of TKE.
Keywords:Meiyu rainstorm  Boundary layer  Heat flux  Turbulent kinetic energy
本文献已被 CNKI 等数据库收录!
点击此处可从《气象科学》浏览原始摘要信息
点击此处可从《气象科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号