Rocks mineralogy controls the metasomatic activities: an indication from water/rock ratio modeling |
| |
Authors: | Sulaiman Alaabed |
| |
Affiliation: | 1. Department of Geology, College of Science, U.A.E. University, Al-Ain, PO Box: 17551, UAE
|
| |
Abstract: | The final ratio equation of an isotopic element in a rock, derived from water/rock formula of McCulloch et al. Earth Planet Sci Lett 46:201-211, 1980, McCulloch et al. J Geophys Res 86:B4 2721-2735, 1981 is used to assess the behavior of diverse suites of rocks towards the alteration effect, and what implications can give about hydrothermal alteration in terms of isotopic compositions. Due to their higher Sr and lower Nd initial ratios than seawater, rocks of metamorphic and sedimentary signatures such as carbonates and Precambrian basement rocks show similar but inverse mixing curves compared with igneous rocks. Sr composition of rocks immediately alters by seawater, while Nd composition keeps unchanged until large volumes of water are added. Although, this can be attributed to the very low Nd concentration in seawater, it indicates that Nd-exchange may only take place under seawater, possibly hydrothermally by circulated seawater, and Nd-concentration of less altered crustal rocks are apparently primary. The isotopic composition and rock mineralogy seem to be the main factors controlling the volume of water required to cause isotopic alteration in rocks. Crustal rocks require higher water volumes due to their relatively low temperature minerals, whereas, mantle peridotites mainly consist of residual olivine minerals that are highly susceptible to alteration and lack of Sr and Nd compositions, and so need less amount of water for metasomatism. This property reduces the limited penetration effect as the mafic affinity increases at depth in the oceanic crust, and enables modified (probably acidified) circulated fluids to maintain ion exchanging and leaching throughout their passageway. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|