首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Acceleration and Storage of Energetic Electrons in Magnetic Loops in the Course of Electric Current Oscillations
Authors:V V Zaitsev  A V Stepanov
Institution:1.Institute of Applied Physics,Nizhny Novgorod,Russia;2.Pulkovo Observatory,Saint Petersburg,Russia
Abstract:A mechanism of electron acceleration and storage of energetic particles in solar and stellar coronal magnetic loops, based on oscillations of the electric current, is considered. The magnetic loop is presented as an electric circuit with the electric current generated by convective motions in the photosphere. Eigenoscillations of the electric current in a loop induce an electric field directed along the loop axis. It is shown that the sudden reductions that occur in the course of type IV continuum and pulsating type III observed in various frequency bands (25?–?180 MHz, 110?–?600 MHz, 0.7?–?3.0 GHz) in solar flares provide evidence for acceleration and storage of the energetic electrons in coronal magnetic loops. We estimate the energization rate and the energy of accelerated electrons and present examples of the storage of energetic electrons in loops in the course of flares on the Sun or on ultracool stars. We also discuss the efficiency of the suggested mechanism as compared with the electron acceleration during the five-minute photospheric oscillations and with the acceleration driven by the magnetic Rayleigh–Taylor instability.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号