首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Volcanic exhalations and ore deposition in the vicinity of the sea floor
Authors:J D Ridge
Institution:(1) Pennsylvania, U. S. A.
Abstract:Recent work by Haas (1971) has made available information on densities and vapor pressures of solutions of differing salinities at temperatures up to 330 °C. From these data it is possible to predict the behavior of volcanic exhalations of various degrees of salinity as they approach the sea floor. Particular attention is devoted to solutions of 5.0 weight per cent NaCl and 20 weight per cent NaCl, two fluids that approximate quite closely the salinities of what Roedder (1967) termed: (1) normal hydrothermal fluids and (2) fluids typical of stratiform deposits of low-temperature conditions of origin. It is apparent that solutions above 220–230 °C. cannot reach a sea floor on which the depth of water is 180 m or less in the liquid state but will boil at some appreciable depth beneath the sea floor. Such boiling would result in the precipitation of all constituents of the ore fluids of significantly lower vapor pressure than water. The principal such constituent would be salt, and no sulfide deposits, the major constituent of which is salt, are known. It follows, therefore, that ore fluids probably never get close to sea floor of shallow seas at temperatures high enough to permit boiling. Ore fluids significantly above 230 °C. can reach the sea floor in the fluid state only if the depth of the sea in the area in question is well above 180 m, for example, solutions at temperatures of ±300 °C. reach the sea floor in the liquid state only if the depth of sea water is slightly over 915 m. Ore fluids reaching the sea floor at such depths may be the parents of such fluids as the Red and Salton Sea brines. On the basis of these data, the Cyprus and Kuroko deposits are discussed.
Zusammenfassung Eine kürzlich erschienene Veröffentlichung von Haas (1971) hat Daten über die Dichte und den Dampfdruck von Lösungen verschiedener Salzgehalte und Temperaturen bis zu 330 °C gebracht. Mit diesen Daten ist es möglich, das Verhalten von vulkanischen Exhalationen verschiedener Salzgehalte zu bestimmen, wenn sie sich dem Meeresboden nähern. Besonders eingehend werden Lösungen von 5.0 Gewichtsprozent NaCl und 20 Gewichtsprozent NaCl betrachtet, die von Roedder (1967) 1. als normale hydrothermale Lösungen und 2. als Lösungen, die typisch für schichtgebundene telethermale Lagerstätten sind, bezeichnet werden. Es ist offensichtlich, daß, wenn die Wassertiefe weniger als etwa 180 m ist, Lösungen von einer Temperatur von 220–230 °C den Meeresboden nicht im flüssigen Zustand erreichen können, sondern bei einiger Tiefe unter dem Meeresboden zum Sieden kommen. Dieses würde zu einer Ausfällung aller jener Bestandteile der Lösung führen, deren Dampfdruck geringer als der des Wassers ist. Der Hauptbestandteil würde Salz sein, und keine Sulfiderzlagerstätten, in denen Salz der Hauptbestandteil ist, sind bekannt. Es wird hieraus geschlossen, daß Lagerstätten-bildende Lösungen wahrscheinlich niemals nah an den Boden seichter Meere kommen, während ihre Temperaturen hoch genug sind, um Sieden zu erlauben. Lagerstätten-bildende Lösungen, wesentlich heißer als 230 °C, können im flüssigen Zustand den Meeresboden nur erreichen, wenn die Meerestiefe an diesem Punkt größer als 180 m ist; zum Beispiel können Lösungen, deren Temperatur etwa 300 °C ist, den Meeresboden im flüssigen Zustand nur erreichen, wenn die Meerestiefe größer als 915 m ist. Erzbildende Lösungen, die den Meeresboden in solcher Tiefe erreichen, mögen die Stammlösungen der hoch konzentrierten Salzlösungen des Roten Meeres und des Salton Sea sein. Die Lagerstätten Zyperns und Kurokos werden anhand dieser Daten diskutiert.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号