首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On the contribution of Rossby waves driven by surface buoyancy fluxes to low-frequency North Atlantic steric sea surface height variations
Authors:Peter Kowalski
Institution:Department of Physics, Imperial College, London, UK
Abstract:Previous studies have shown that wind-forced baroclinic Rossby waves can capture a large portion of low-frequency steric sea surface height (SSH) variations in the North Atlantic. In this paper, the classical wind-driven Rossby wave model derived in a 1.5-layer ocean is extended to include surface buoyancy forcing, and the new model is then used to assess the contribution from buoyancy-forced Rossby waves to low-frequency North Atlantic steric SSH variations. Buoyancy forcing is determined from surface heating as freshwater fluxes are negligible. It is found that buoyancy-forced Rossby waves are important in only a few regions belonging to the subtropical-to-midlatitude and eastern subpolar North Atlantic. In these regions, the new Rossby wave model accounts for 25%–70% of low-frequency steric SSH variations. Furthermore, as part of the analysis it is also shown that a simple static model driven by local surface heat fluxes captures 60%–75% of low-frequency steric SSH variations in the Labrador Sea, which is a region where Rossby waves are found to have no influence on the steric SSH.
Keywords:Sea surface height  Rossby waves  Subpolar North Atlantic  1  5-Layer ocean
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号