Abstract: | The seismic response of liquid-filled cylindrical storage tanks has been investigated using finite element techniques implemented in the general purpose structural analysis computer code ANSYS. Both added mass concepts and displacement-based fluid finite elements were employed to allow for the effects of the liquid. Simplified response spectrum modal analyses of a tank making use of the axisymmetric harmonic displacement patterns of the principal modes of deformation were found to give accurate predictions of the tank behaviour with a rigidly anchored base. Time history analyses of three-dimensional finite element models of unanchored and flexibly anchored tanks, with gap conditions between the tank base and the supporting floor to allow lift-off of the base, indicated that stresses in the tank and resultant loads on the floor can be much greater than for a rigidly restrained tank. These results demonstrate the importance of carefully considering the restraint conditions when performing seismic design calculations on storage tanks. |