首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Unstable flow in layered soils: A review
Authors:Daniel Hillel
Abstract:Release of water from the soil in the process of internal drainage, and its continued downward movement through the vadose zone, constitute the main mechanism of groundwater recharge. Water released from the soil generally contains solutes, and these are conveyed to the groundwater via the same pathways as the drained water. Knowledge of those pathways is essential in any attempt to minimize the likelihood of groundwater pollution. Solutes generally interact with the medium in which they reside or travel, and the spatial and temporal pattern of their movement influences the nature and extent of their interactions. For many years, the assumption had prevailed that flow in the vadose zone is a steady-state, uniform process. Hence the vadose zone can serve to filter, attenuate, as well as degrade, potential pollutants. Recently, however, the existence of preferred pathways has come to light. Such pathways might connect the soil's upper zone directly to the water-table, thus bypassing the greater volume of the vadose zone and evading its filtering mechanisms. Groundwater recharge models that ignore the possibility of such spurts of contamination may be highly misleading. Preferred flow path may be cracks, animal burrows, or decayed root channels. Less easily discernible are transient and random paths associated with the phenomenon of ‘unstable flow’, which is most likely to occur in layered soils during infiltration. The wetting front, instead of remaining horizontal and advancing continuously from one layer to the next, may begin (particularly in transition from a fine-textured to a coarse-textured layer) to form bulges, called ‘fingers’, which propagate downwards and may become, in effect, vertical pipes. At present we are aware only of the occasional occurrence and potential importance of such phenomena, but as yet have neither the systematic empirical data, nor a proven comprehensive theoretical framework, by which to assess where, when, and according to what pattern, they are likely to occur.
Keywords:Unstable flow  Infiltration
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号