首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Magnetic fabrics of the Bloodgood Canyon and Shelley Peak Tuffs,southwestern New Mexico: implications for emplacement and alteration processes
Authors:Sheila J Seaman  William C McIntosh  John W Geissman  Michael L Williams  Wolfgan E Elston
Institution:(1) Department of Geology, Colgate University, 13346 Hamilton, NY, USA;(2) New Mexico Bureau of Mines, 87801 Socorro, NM, USA;(3) Department of Geology, University of New Mexico, 87131 Albuquerque, NM, USA;(4) Department of Geology and Geography, University of Massachusetts, 01003 Amherst, MA, USA
Abstract:Anisotropy of magnetic susceptibility (AMS) of the middle Tertiary Bloodgood Canyon and Shelley Peak Tuffs of the Mogollon-Datil volcanic field has been used to (1) evaluate the ability of AMS to constrain flow lineations in low-susceptibility ash-flow tuffs; (2) establish a correlation between magnetic fabric, magnetic mineralogy, tuff facies, and characteristics of the depositional setting; and (3) constrain source locations of the tuffs. The tuffs are associated with the overlapping Bursum caldera and Gila Cliff Dwellings basin. The high-silica Bloodgood Canyon Tuff fills the Gila Cliff Dwellings basin and occurs as thin outcrops outside of the basin. The older Shelley Peak Tuff occurs as thin outcrops both along the boundary between the two structures, and outside of the complex. AMS data were collected from 16 sites of Bloodgood Canyon Tuff basin fill, 19 sites of Bloodgood Canyon Tuff outflow, and 11 sites of Shelley Peak Tuff. Sites were classified on the basis of within-site clustering of orientations of principal susceptibility axes, based on the categories of Knight et al. (1986). Most microscopically visible oxide minerals in the Bloodgood Canyon Tuff outflow and basin fill, and in the Shelley Peak Tuff are members of the hematite-ilmenite solid solution series. However, IRM acquisition data indicate that Bloodgood Canyon Tuff basin fill and Shelley Peak Tuff have magnetic mineralogy dominated by single- or pseudo-single-domain magnetite, and that the magnetic mineralogy of the Bloodgood Canyon Tuff outflow is dominated by hematite. Hematite in Bloodgood Canyon Tuff outflow is likely to be the result of deuteric and/or low-temperature alteration of magnetite and iron silicate minerals. Bulk magnetic susceptibility is higher in magnetite-dominated ash-flow tuff (Bloodgood Canyon Tuff basin fill and Shelley Peak Tuff) than it is in hematite-dominated ash-flow tuff (Bloodgood Canyon Tuff outflow). Bloodgood Canyon Tuff outflow has the highest total anisotropy (H) of the three units, followed by Shelley Peak Tuff and Bloodgood Canyon Tuff basin fill. All three ash-flow tuffs are genearlly characterized by oblate susceptibility ellipsoids, with those of the Bloodgood Canyon Tuff basin fill nearest to spherical. At high values of total anisotropy, Shelley Peak Tuff susceptibility ellipsoids attain a prolate shape; those of Bloodgood Canyon Tuff outflow attain an increasingly oblate shape. Three factors may influence differences in total anisotropy and susceptibility ellipsoid shape: (1) ash which travelled the greatest distance before deposition may show the best development of magnetic fabric, particularly of magnetic lineation; (2) deposition of ash in a closed basin may inhibit laminar flow throughout the sheet and the resulting development of flow textures; and (3) replacement of magnetite and iron silicates preferentially oriented within the foliation plane by hematite with strong crystalline anisotropy may enhance the magnetic susceptibility within that plane. Scatter in AMS axis orientation within sites may result from: (1) greater orientation inaccuracy in block-sampled than in fielddrilled samples; (2) rheomorphism; and (3) low accuracy of AMS measurement in low-susceptibility ashflow tuffs. Evaluation of flow lineation based on AMS of sites with well-clustered K 1 axes indicates that (1) Bloodgood Canyon Tuff basin fill flowed along a generally northwest-southeast azimuth; (2) Shelley Peak Tuff located on the boundary of the Bursum caldera and the Gila Cliff Dwellings basin flowed along a nearly east-west azimuth; and (3) Bloodgood Canyon Tuff outflow sites have K 1 susceptibility axes generally radial to the Bursum-Gila Cliff Dwellings complex, but within-site scatter of K 1 orientations is generally too large to draw conclusions about flow lineation orientation. Limited petrographic work on pilot thin sections adds flow direction information to AMS-derived flow lineation information.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号