首页 | 本学科首页   官方微博 | 高级检索  
     


Fragility functions for masonry infill walls with in‐plane loading
Authors:Andrea Chiozzi  Eduardo Miranda
Affiliation:1. Department of Engineering, University of Ferrara, Ferrara, Italy;2. Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
Abstract:Recent seismic events have provided evidence that damage to masonry infills can lead not only to large economic losses but also to significant injuries and even fatalities. The estimation of damage of such elements and the corresponding consequences within the performance‐based earthquake engineering framework requires the construction of reliable fragility functions. In this paper, drift‐based fragility functions are developed for in‐plane loaded masonry infills, derived from a comprehensive experimental data set gathered from current literature, comprising 152 masonry infills with different geometries and built with different types of masonry blocks, when tested under lateral cyclic loading. Three damage states associated with the structural performance and reparability of masonry infill walls are defined. The effect of mortar compression strength, masonry prism compression strength, and presence of openings is evaluated and incorporated for damage states where their influence is found to be statistically significant. Uncertainty due to specimen‐to‐specimen variability and sample size is quantified and included in the proposed fragility functions. It is concluded that prism strength and mortar strength are better indicators of the fragility of masonry infills than the type of bricks/blocks used, whose influence, in general, is not statistically significant for all damage states. Finally, the presence of openings is also shown to have statistically relevant impact on the level of interstory drift ratio triggering the lower damage states.
Keywords:damage estimation  fragility functions  masonry infill walls  seismic performance assessment
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号