摘 要: | 红树林和生态环境保护、生态平衡和生物多样性息息相关。使用Sentinel-2A数据获取海南省东寨港红树林保护区的遥感影像,对数据进行预处理,提取光谱特征、纹理特征和湿度特征,基于K近邻(K-nearest neighbor,KNN)、随机森林(random forest,RF)、决策树、支持向量机(support vector machine,SVM)和反向传播神经网络(back propagation neural network,BPNN)方法,通过多次实验提取出海南省东寨港红树林区域,并探讨了机器学习方法中不同类型分类器在提取红树林过程中的优缺点。结果表明:(1)Sentinel-2A的Band8A、Band11、Band12波段组合能够较好突出红树林特征,结合湿度特征和纹理特征可以提高红树林的分类精度;(2)基于机器学习方法能够准确提取红树林区域,其中,SVM分类精度最高,达到92.31%,BPNN、RF分类精度分别为88.46%、90.38%,Kappa系数表明分类结果具有良好的一致性;(3)比较不同机器学习方法对红树林的分类效果,发现SVM和BPNN等非线性方法能提取出更准...
|