首页 | 本学科首页   官方微博 | 高级检索  
     


Oxygen isotope mapping of the Archean Sturgeon Lake caldera complex and VMS-related hydrothermal system, Northwestern Ontario, Canada
Authors:Gregory J. Holk  Bruce E. Taylor  Alan G. Galley
Affiliation:(1) Department of Geological Sciences, The Institute for Integrated Research in Materials, Environments, and Societies, California State University, Long Beach, CA 90840-3902, USA;(2) Geological Survey of Canada, 601 Booth Street, Ottawa, ON, Canada, K1A 0E8
Abstract:The hydrothermal and magmatic evolution of the Sturgeon Lake caldera complex is graphically documented by a regional-scale (525 km2) analysis of oxygen isotopes. Spatial variations in whole-rock oxygen isotope compositions provide a thermal map of the cumulative effects of multiple stages of hydrothermal metasomatism before, during, and after volcanogenic massive sulfide (VMS) mineralization. There is a progressive, upward increase in δ18O from less than 2‰ to greater than 15‰ through a 5-km-thick section above the Biedelman Bay subvolcanic intrusive complex. This isotopic trend makes it clear that at least the earlier phases of this intrusive complex were coeval with the overlying VMS-hosting cauldron succession and provided thermal energy to drive a convective hydrothermal circulation system. The sharp contrast in δ18O values between late stage phases of the Biedelman Bay intrusion and immediate hanging wall strata indicates that the main phase of VMS-related hydrothermal activity took place before late-stage resurgence in the cauldron-related magmatic activity. Mineralogical and isotopic evidence indicates the presence of both syn- and postmineralization hydrothermal activity defined by the presence of widespread semiconformable and more restricted discordant alteration zones that affect the pre- and syncauldron strata. The semiconformable alteration zones formed during early stages of hydrothermal circulation and are defined by widespread silicification and carbonatization in association with relatively high δ18O values. The discordant alteration assemblages, containing Al-silicate minerals with chloritoid and/or Fe-rich carbonate or chlorite, centered on synvolcanic faults represent restricted zones of both seawater inflow and hydrothermal fluid upflow. A rapid increase in δ18O values (∼7–9‰) over a short distance (<200 m) suggests marked cooling of hydrothermal fluid from ∼350°C to less than 130°C either just before or during discharge onto the seafloor. Late emplacement of diorite sills and a dacite dome disrupted the isotopic imprint of cauldron-stage hydrothermal activity. The abrupt lowering of δ18O values at the transition from explosive to passive volcanism (andesite flows and dacite domes) indicates postcauldron emergence. Subsequently, thrust faulting disrupted the older synvolcanic hydrothermal isotopic patterns.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号