首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mapping acidic mine waste with seasonal airborne hyperspectral imagery at varying spatial scales
Authors:Gwendolyn E Davies  Wendy M Calvin
Institution:1.Department of Geological Sciences and Engineering,University of Nevada,Reno,USA;2.USGS California Water Science Center,Sacramento,USA
Abstract:Airborne imaging spectrometer (also known as hyperspectral) remote sensing has been widely used to characterize mineralogy on mine waste surfaces, which is useful for predicting potential sources of acidity and metal leaching. The most successful applications employ fine spatial resolution—20-m pixels or smaller. Future satellite imaging spectrometer sensors are proposed to provide coarser spatial resolution—30- to 60-m pixels. This study examined the ability to map minerals related to acid mine drainage with visible to shortwave infrared hyperspectral imagery at varying spatial scales (2-, 15-, 30-, 60-m pixels) at the Leviathan mine Superfund site, located in the Eastern Sierra Nevada. Mineral maps were produced using spectral angle mapper and matched filtering algorithms. The 15-m images provided comparable maps to the 2-m images. The 30- and 60-m images lost the ability to identify smaller features; however, they were still able to identify high- and low-priority remediation zones at least 75 m in width. Based on our results, we believe 30-m spatial resolution on a satellite hyperspectral sensor will be sufficient for identifying hazardous surfaces at larger mine waste sites and provide important reconnaissance information that can help prioritize detailed ground-based studies.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号