首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Multi-hazard susceptibility mapping based on Convolutional Neural Networks
Institution:1. Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China;2. State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China;3. School of Computer Science, China University of Geosciences, Wuhan 430074, China;4. Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences, Wuhan 430074, China;5. Department of Civil Engineering, International University of Business Agriculture and Technology (IUBAT), Dhaka 1230, Bangladesh
Abstract:Multi-hazard susceptibility prediction is an important component of disasters risk management plan. An effective multi-hazard risk mitigation strategy includes assessing individual hazards as well as their interactions. However, with the rapid development of artificial intelligence technology, multi-hazard susceptibility prediction techniques based on machine learning has encountered a huge bottleneck. In order to effectively solve this problem, this study proposes a multi-hazard susceptibility mapping framework using the classical deep learning algorithm of Convolutional Neural Networks (CNN). First, we use historical flash flood, debris flow and landslide locations based on Google Earth images, extensive field surveys, topography, hydrology, and environmental data sets to train and validate the proposed CNN method. Next, the proposed CNN method is assessed in comparison to conventional logistic regression and k-nearest neighbor methods using several objective criteria, i.e., coefficient of determination, overall accuracy, mean absolute error and the root mean square error. Experimental results show that the CNN method outperforms the conventional machine learning algorithms in predicting probability of flash floods, debris flows and landslides. Finally, the susceptibility maps of the three hazards based on CNN are combined to create a multi-hazard susceptibility map. It can be observed from the map that 62.43% of the study area are prone to hazards, while 37.57% of the study area are harmless. In hazard-prone areas, 16.14%, 4.94% and 30.66% of the study area are susceptible to flash floods, debris flows and landslides, respectively. In terms of concurrent hazards, 0.28%, 7.11% and 3.13% of the study area are susceptible to the joint occurrence of flash floods and debris flow, debris flow and landslides, and flash floods and landslides, respectively, whereas, 0.18% of the study area is subject to all the three hazards. The results of this study can benefit engineers, disaster managers and local government officials involved in sustainable land management and disaster risk mitigation.
Keywords:Multi-hazard  Convolutional Neural Network  Machine learning  Eastern Hindukush  Pakistan  LSM"}  {"#name":"keyword"  "$":{"id":"k0035"}  "$$":[{"#name":"text"  "_":"Landslide Susceptibility Mapping  FFSM"}  {"#name":"keyword"  "$":{"id":"k0045"}  "$$":[{"#name":"text"  "_":"Flash Flood Susceptibility Mapping  DFSM"}  {"#name":"keyword"  "$":{"id":"k0055"}  "$$":[{"#name":"text"  "_":"Debris Flow Susceptibility Mapping  CNN"}  {"#name":"keyword"  "$":{"id":"k0065"}  "$$":[{"#name":"text"  "_":"Convolutional Neural Network  DL"}  {"#name":"keyword"  "$":{"id":"k0075"}  "$$":[{"#name":"text"  "_":"Deep Learning  MCDM"}  {"#name":"keyword"  "$":{"id":"k0085"}  "$$":[{"#name":"text"  "_":"Multi-Criteria Decision-Making  ML"}  {"#name":"keyword"  "$":{"id":"k0095"}  "$$":[{"#name":"text"  "_":"Machine Learning  LR"}  {"#name":"keyword"  "$":{"id":"k0105"}  "$$":[{"#name":"text"  "_":"Logistic Regression  KNN"}  {"#name":"keyword"  "$":{"id":"k0115"}  "$$":[{"#name":"text"  "_":"K-Nearest Neighbor  SPI"}  {"#name":"keyword"  "$":{"id":"k0125"}  "$$":[{"#name":"text"  "_":"Stream Power Index  NDVI"}  {"#name":"keyword"  "$":{"id":"k0135"}  "$$":[{"#name":"text"  "_":"Normalized Difference Vegetation Index  STI"}  {"#name":"keyword"  "$":{"id":"k0145"}  "$$":[{"#name":"text"  "_":"Sediment Transportation Index  NDMA"}  {"#name":"keyword"  "$":{"id":"k0155"}  "$$":[{"#name":"text"  "_":"National Disaster Management Authority  TWI"}  {"#name":"keyword"  "$":{"id":"k0165"}  "$$":[{"#name":"text"  "_":"Topographic Wetness Index  ALOS"}  {"#name":"keyword"  "$":{"id":"k0175"}  "$$":[{"#name":"text"  "_":"Advanced Land Observing Satellite  DEM"}  {"#name":"keyword"  "$":{"id":"k0185"}  "$$":[{"#name":"text"  "_":"Digital Elevation Model  AUC"}  {"#name":"keyword"  "$":{"id":"k0195"}  "$$":[{"#name":"text"  "_":"Area Under the Receiver Operating Characteristic Curve  OA"}  {"#name":"keyword"  "$":{"id":"k0205"}  "$$":[{"#name":"text"  "_":"Overall Accuracy  MAE"}  {"#name":"keyword"  "$":{"id":"k0215"}  "$$":[{"#name":"text"  "_":"Mean Absolute Error  RMSE"}  {"#name":"keyword"  "$":{"id":"k0225"}  "$$":[{"#name":"text"  "_":"Root Mean Square Error  PCC"}  {"#name":"keyword"  "$":{"id":"k0235"}  "$$":[{"#name":"text"  "_":"Pearson Correlation Coefficient  MDG"}  {"#name":"keyword"  "$":{"id":"k0245"}  "$$":[{"#name":"text"  "_":"Mean Decrease Gini
本文献已被 ScienceDirect 等数据库收录!
点击此处可从《地学前缘(英文版)》浏览原始摘要信息
点击此处可从《地学前缘(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号