首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Seismic hazard analysis for engineering sites based on the stochastic finite-fault method
Authors:Ruifang Yu  Yisheng Song  Xiangyun Guo  Qianli Yang  Xinjuan He  Yanxiang Yu
Institution:Institute of Geophysics, China Earthquake Administration, Beijing 10081, China
Abstract:Seismic hazard analyses are mainly performed using either deterministic or probabilistic methods. However, there are still some defects in these statistical model-based approaches for regional seismic risk assessment affected by the near-field of large earthquakes. Therefore, we established a deterministic seismic hazard analysis method that can characterize the entire process of ground motion propagation based on stochastic finite-fault simulation, and we chose the site of the Xiluodu dam to demonstrate the method. This method can characterize earthquake source properties more realistically than other methods and consider factors such as the path and site attenuation of seismic waves. It also has high computational efficiency and is convenient for engineering applications. We first analyzed the complexity of seismogenic structures in the Xiluodu dam site area, and then an evaluation system for ground motion parameters that considers various uncertainties is constructed based on a stochastic finite-fault simulation. Finally, we assessed the seismic hazard of the dam site area comprehensively. The proposed method was able to take into account the complexity of the seismogenic structures affecting the dam site and provide multi-level parameter evaluation results corresponding to different risk levels. These results can be used to construct a dam safety assessment system of an earthquake in advance that provides technical support for rapidly and accurately assessing the post-earthquake damage state of a dam, thus determining the influence of an earthquake on dam safety and mitigating the risk of potential secondary disasters.
Keywords:Xiluodu dam  seismic hazard  ground motion parameters  seismogenic structures
本文献已被 ScienceDirect 等数据库收录!
点击此处可从《Earthquake Science》浏览原始摘要信息
点击此处可从《Earthquake Science》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号