首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Using hyperspectral reflectance to detect different soil erosion status in the Subtropical Hilly Region of Southern China: a case study of Changting, Fujian Province
Authors:Chen Lin  Sheng-Lu Zhou  Shao-Hua Wu
Institution:1. State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, People’s Republic of China
2. School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210093, People’s Republic of China
Abstract:Hyperspectral reflectance is widely used for determining important properties of soil erosion. However, there have been few studies which focus on the influence of soil erosion intensity on the characteristics of hyperspectral reflectance, and such information would provide a new tool to improve quantitative understanding of soil erosion. In this study, 35 soil samples were collected from three regions with different erosion intensities in Changting County, a typical severely eroded county in the ferralic cambisol region of southern China, and classified into three groups according to different erosion controlling status. All the samples were scanned at wavelengths from 400 to 2,498 nm by an ASD Field Spec Portable Spectrometer, and the erosion intensity of each sample was calculated using the Revised Universal Soil Loss Equation. Multivariate stepwise linear regression was then employed to model the soil erosion intensity based on reflectance. The results suggested that the absorption peaks of each sample were in a similar wavelength range, while the absorption depth varied with different erosion status, and the reflectance of extremely eroded soil samples were the highest. During modelling of erosion intensity, the result was poor when all the samples were combined, but improved greatly at certain wavelength ranges when samples were classified into three groups based on different erosion controlling status. The extreme erosion group markedly outperformed the other two groups, in which the R 2 values between the actual and predicted erosion intensity were 0.67, 0.85 and 0.80 for each spectral type. The results indicated that hyperspectral reflectance is a promising method for accurately monitoring erosion intensity.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号