首页 | 本学科首页   官方微博 | 高级检索  
     


Long-Term Evolution of Fluid-Rock Interactions in Magmatic Arcs: Evidence from the Ritter Range Pendant, Sierra Nevada, California, and Numerical Modeling
Authors:HANSON, R. BROOKS   SORENSEN, SORENA S.   BARTON, MARK D.   FISKE, RICHARD S.
Affiliation:1Science 1333 H St., NW, Washington, DC 20005
2Department of Mineral Sciences, Smithsonian Institution Washington, DC 20560
3Department of Earth and Space Sciences UCLA, Los Angeles, California 90024
Abstract:A record of > 100 million years of fluid flow, alteration,and metamorphism in the evolving Sierra Nevada magmatic areis preserved in metavolcanic rocks of the Ritter Range pendantand surrounding granitoids. The metavolcanic rocks consist of:(1) a lower section of mostly marine volcaniclastic rocks, lavas,and intercalated carbonate rocks that is Triassic to Jurassicin age, and (2) an upper section comprising a subaerial caldera-fillcomplex of mid-Cretaceous age. Late Cretaceous high-temperaturecontact metamorphism (~2 kbar, >450–500C) occurredafter renewed normal faulting along the caldera-bounding faultsystem juxtaposed the two sections. The style and degree of alteration and {delta}18O values differ amongthe rocks of the upper and lower sections and the granitoids.Rocks of the lower section show pervasive lithologically controlledalkali alteration, local Mn and Mg enrichment, and oxidation.Some ash flow tuffs now contain up to 10% K2O by weight. Therocks of the upper section show lesser extents of alkali alteration.Granitoids that cut both sections are generally unaltered. Mostmetavolcanic rocks of the lower section have high {delta}18O values(+ 11 to + 16%; whole rock and quartz phenocrysts); however,lower-section rocks within the caldera-bounding fault systemhave low {delta}18O values of + 4 to +7{per thousand}. The metavolcanic rocks ofthe upper section also have low {delta}18O values of + 2 to + 7{per thousand}. Granitoidshave {delta}18O values of + 7 to + 10{per thousand}, typical of unaltered Sierrangranitoids. The lower section contains discontinuous veins ofhigh-temperature (450–500C) calc-silicate minerals. Theseveins are typically <5 m long, do not cross intrusive contacts,and postdate the pervasive alkali alteration. Late veins aretypically > 10 m long, formed at temperatures of less than450–500C, and cross intrusive contacts. Veins have similar{delta}18O values to those of the local host rocks. The nature of the alteration and the high oxygen isotopic valuesof the rocks of the lower section indicate that these rocksinteracted extensively with seawater at temperatures <300C,probably in superposed marine hydrothermal systems associatedwith coeval volcanic centers. Metavolcanic rocks of the uppersection evidently interacted with meteorie waters, probablyin a hydrothermal system associated with the Cretaceous caldera;rocks of the lower section that were adjacent to the calderawere also affected by this alteration. The preservation of thesignatures of these earlier events, the nature of the earlyveins, and results from numerical models of hydrothermal flowthat include fluid production indicate that during progradecontact metamorphism, the rocks of the pendant primarily interactedwith locally derived fluids. Fluid flow was predominantly upwardand away from intrusive contacts and down-temperature. Permeabilitiesare estimated to have been between 0•1 and 1µD, whichis that necessary for maintenance of lithostatic fluid pressures.In hydrothermal models with such permeabilities, large-scalecirculation of meteoric fluids develops after prograde metamorphismceases. The nature of the late veins in the Ritter Range pendantsuggests that such a flow pattern evolved only after the pendantand granitoids had cooled below 450–500C. The long-termhistory of alteration documented in the Ritter Range pendantis probably typical of wall rocks in most batholiths *Present address: Department of Geosciences, University of Arizona, Tucson, Arizona 85721
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号