The microstructure of minerals in coarse-grained Ca-Al-rich inclusions from the Allende meteorite |
| |
Authors: | D.J. Barber P.M. Martin I.D. Hutcheon |
| |
Affiliation: | Department of Physics, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom;Enrico Fermi Institute, University of Chicago, Chicago, IL 60637 USA |
| |
Abstract: | The microstructure and microchemistry of minerals in Ca-Al-rich, coarse-grained inclusions (CAI) from the Allende meteorite have been investigated with transmission electron microscopy (TEM). Spinels contain only low to moderate dislocation densities and are characterized by a ubiquitous, fine black spotty texture believed to originate from a slightly non-stoichiometric composition. Ti-Al-pyroxenes are relatively featureless, but contain veins of secondary phases apparently deposited in unhealed cracks. Chromite has been identified in the veins, suggesting transport of oxidized iron during alteration. Melilites exhibit the greatest variety of microstructures and are the most heavily altered phase in CAI. High dislocation densities are common and crystals exhibit considerable internal strain, indicating that they have not been annealed. Alteration occurs both as veins along cracks and in fronts extending across several grains. Plagioclase is commonly twinned, but dislocations are rare. The size and morphology of antiphase domains suggest a high temperature of formation with significant low-temperature annealing. Submicron pyroxene precipitates are a ubiquitous and unusual feature of Allende plagioclase whose properties are most consistent with prolonged slow cooling and equilibration after plagioclase crystallization. The precipitates appear to be sufficiently abundant to contain the majority of Mg present in plagioclase but do not easily account for Na and Ti abundances. Wollastonite needles from a cavity in a “fluffy” Type A inclusion exhibit the growth habits and relatively perfect external surfaces indicative of direct condensation from a vapor. Alteration products are predominantly crystalline and alteration of melilite appears to have proceeded primarily by solid-state diffusion at a temperature of approximately 920°K. Overall, the TEM observations suggest that CAI formed under near equilibrium conditions characterized by slow cooling and that solid-state bulk diffusion was the major process affecting their post-crystallization history. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|