首页 | 本学科首页   官方微博 | 高级检索  
     


Diverse metal sources of Archaean gold deposits: evidence from in situ lead-isotope analysis of individual grains of galena and altaite in the Ross and Kirkland Lake deposits,Abitibi Greenstone belt,Canada
Authors:Keiko Hattori
Affiliation:(1) Ottawa-Carleton Geoscience Centre,and Department of Geology, The University of Ottawa, K1N 6N5 Ottawa, Canada
Abstract:Lead isotope compositions for individual grains of galena and altaite (PbTe) were determined in situ using a secondary ion mass spectrometer (SIMS). Galena was collected from the Ross deposit and altaite from the Kirkland Lake (KL) deposits in the southern Abitibi greenstone belt, Superior Province of Canada. The samples from KL are more radiogenic than those from the Ross deposit. Isotopic compositions vary significantly between different grains in each deposit and form broad linear arrays in 207Pb/204Pb-206Pb/204Pb and 208Pb/204Pb-206Pb/204Pb diagrams. The linear arrays of Pb-isotope data are attributed to mixing of Pb from different sources. At least two sources are required for individual deposits: one with low U/Pb and Th/Pb ratios and the other with high ratios. Lead minerals occurring with Au are less radiogenic than those that are not obviously associated with Au, suggesting that Au was supplied from low U/Pb sources such as sulphides or older ultramafic-mafic rocks. While most data are consistent with the derivation from local rocks, highly radiogenic Pb with relatively low 207Pb/206Pb ratios recorded at KL require post-Archaean mineralization or derivation of the Pb from an unusual crustal source with low mgr. The latter interpretation is favored because of the lack of textural evidence and because it is difficult to dissolve and precipitate altaite at low temperatures. The presence of a Pb reservoir with low mgr is also inferred from the data of Archaean banded iron formations and volcanogenic massive sulphide deposits. Different isotopic patterns of the two deposits suggest different sources of metals in the two deposits. While this conclusion does not reject the derivation of fluids from the lower crust or mantle, the data are not in accord with conceptual models invoking a common source reservoir for metals. The study suggests that fluids, which may have a common origin, leached metals and other constituents from the upper crustal rocks during their ascent. The proposed model, different origins for different constituents, explains much of the conflicting evidence presented by Archaean Au deposits, including provinciality of mineralogy and relatively uniform fluid inclusion and C-isotope data from many Au deposits.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号