首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Amphiphilic sodium alginate-vinyl acetate microparticles for drug delivery
Authors:YU Weiting  ZHANG Demeng  LIU Xiudong  WANG Yunhong  TONG Jun  ZHANG Mengxue  MA Xiaojun
Institution:Affiliated Zhongshan Hospital of Dalian University;Institute of Oceanology;College of Environment and Chemical Engineering;State Key Laboratory of Bioactive Seaweed Substances;Dalian Institute of Chemical Physics
Abstract:To overcome the fast or burst release of hydrophilic drugs from hydrophilic alginate-based carriers, hydrophobic molecule(vinyl acetate, VAc) was grafted on alginate(Alg), which was further used to prepare drug carriers. Amphiphilic Alg-g-PVAc hydrogel beads were firstly prepared by emulsification/internal gelation technique for the loading of bovine serum albumin(BSA). Then, chitosan was coated on the surface of beads to form novel amphiphilic Alg-g-PVAc/chitosan(Alg-g-PVAc/CS) microcapsules.The BSA-loading amphiphilic Alg-g-PVAc/chitosan(Alg-g-PVAc/CS) microcapsules display similar morphology and size to the hydrophilic alginate/chitosan(AC) microcapsules. However, the drug loading and loading efficiency of BSA in Alg-g-PVAc/CS microcapsules are higher, and the release rate of BSA from Alg-g-PVAc/CS microcapsules is slower. The results demonstrate that the introduction of hydrophobic PVAc on alginate can effectively help retard the release of BSA, and the higher degree of substitution is,the slower the release rate is. In addition, the complex membrane can also be adjusted to delay the release of BSA. As a whole, amphiphilic sodium alginate-vinyl acetate/CS microparticles could be developed for macromolecular drug delivery.
Keywords:hydrophobic modification  sodium alginate-vinyl acetate  amphiphilic Alg-g-PVAc/chitosan microcapsules  drug delivery
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号