首页 | 本学科首页   官方微博 | 高级检索  
     


Reducing uncertainty in stochastic streamflow generation and reservoir sizing by combining observed,reconstructed and projected streamflow
Authors:Jason?Patskoski  author-information"  >  author-information__contact u-icon-before"  >  mailto:jpatskoski@gmail.com"   title="  jpatskoski@gmail.com"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author  author-information__orcid u-icon-before icon--orcid u-icon-no-repeat"  >  http://orcid.org/---"   itemprop="  url"   title="  View OrcID profile"   target="  _blank"   rel="  noopener"   data-track="  click"   data-track-action="  OrcID"   data-track-label="  "  >View author&#  s OrcID profile,A.?Sankarasubramanian
Affiliation:1.Department of Civil, Construction and Environmental Engineering,North Carolina State University,Raleigh,USA
Abstract:Reservoir sizing is one of the most important aspects of water resources engineering as the storage in a reservoir must be sufficient to supply water during extended droughts. Typically, observed streamflow is used to stochastically generate multiple realizations of streamflow to estimate the required storage based on the Sequent Peak Algorithm (SQP). The main limitation in this approach is that the parameters of the stochastic model are purely derived from the observed record (limited to less than 80 years of data) which does not have information related to prehistoric droughts. Further, reservoir sizing is typically estimated to meet future increase in water demand, and there is no guarantee that future streamflow over the planning period will be representative of past streamflow records. In this context, reconstructed streamflow records, usually estimated based on tree ring chronologies, provide better estimates of prehistoric droughts, and future streamflow records over the planning period could be obtained from general circulation models (GCMs) which provide 30 year near-term climate change projections. In this study, we developed paleo streamflow records and future streamflow records for 30 years are obtained by forcing the projected precipitation and temperature from the GCMs over a lumped watershed model. We propose combining observed, reconstructed and projected streamflows to generate synthetic streamflow records using a Bayesian framework that provides the posterior distribution of reservoir storage estimates. The performance of the Bayesian framework is compared to a traditional stochastic streamflow generation approach. Findings based on the split-sample validation show that the Bayesian approach yielded generated streamflow traces more representative of future streamflow conditions than the traditional stochastic approach thereby, reducing uncertainty on storage estimates corresponding to higher reliabilities. Potential strategies for improving future streamflow projections and its utility in reservoir sizing and capacity expansion projects are also discussed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号