首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Partially to fully saturated flow through smooth,clean, open fractures: qualitative experimental studies
Authors:Brendon?R?Jones  Luke?B?Brouwers  Email author" target="_blank">Matthys?A?DippenaarEmail author
Institution:1.Engineering Geology and Hydrogeology, Department of Geology,University of Pretoria,Pretoria,South Africa
Abstract:Fractures are both rough and irregular but can be expressed by a simple model concept of two smooth parallel plates and the associated cubic law governing discharge through saturated fractures. However, in natural conditions and in the intermediate vadose zone, these assumptions are likely violated. This paper presents a qualitative experimental study investigating the cubic law under variable saturation in initially dry free-draining discrete fractures. The study comprised flow visualisation experiments conducted on transparent replicas of smooth parallel plates with inlet conditions of constant pressure and differing flow rates over both vertical and horizontal inclination. Flow conditions were altered to investigate the influence of intermittent and continuous influx scenarios. Findings from this research proved, for instance, that saturated laminar flow is not likely achieved, especially in nonhorizontal fractures. In vertical fractures, preferential flow occupies the minority of cross-sectional area despite the water supply. Movement of water through the fractured vadose zone therefore becomes a matter of the continuity principle, whereby water should theoretically be transported downward at significantly higher flow rates given the very low degree of water saturation. Current techniques that aim to quantify discrete fracture flow, notably at partial saturation, are questionable. Inspired by the results of this study, it is therefore hypothetically improbable to achieve saturation in vertical fractures under free-draining wetting conditions. It does become possible under extremely excessive water inflows or when not free-draining; however, the converse is not true, as a wet vertical fracture can be drained.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号