首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Gabbro Akarem mafic-ultramafic complex, Eastern Desert, Egypt: a Late Precambrian analogue of Alaskan-type complexes
Authors:H M Helmy  M M El Mahallawi
Institution:(1) Geology Department, Faculty of Science, Minia University, Minia, Egypt, EG
Abstract:Summary ?Gabbro Akarem is a Late-Precambrian concentrically-zoned mafic-ultramafic intrusion located along a major fracture zone trending NE-SW in the Eastern Desert of Egypt. It intruded low-grade metasedimentary rocks, and has a contact metamorphic aureole a few meters wide. This intrusion comprises a dunite core enveloped by clinopyroxene hornblende-bearing lherzolite, olivine-hornblende clinopyroxenite and plagioclase hornblendite. The contacts between the rock types are gradational. They have cumulate textures and the observed crystallization sequence is: olivine ( + cotectic spinel)-orthopyroxene (Opx)-clinopyroxene (Cpx)-hornblende. Mafic minerals from the core of the intrusion are highly magnesian, a consistent increase in the Mg# of olivine (from 69 to 87), Opx (from 62 to 89), Cpx (from 85 to 96) and hornblends (from 62 to 88) is observed from the mafic to the ultramafic units. Spinel has a wide range of Cr# and Mg# ratios. The various rock units define a fractionation trend. The mafic rocks are slightly LREE-enriched relative to the ultramafic units and chondrites. In many aspects, the Gabbro Akarem intrusion is similar to Alaskan-type complexes. Mineralogical and geochemical data suggest that the different rock units were fractionated from a hydrous picritic magma with no apparent crustal contamination. A petrogenetic model involving a rapid rise of hydrous mantle magma along a major fracture zone is proposed. Extensive fractional crystallization led to magma chamber stratification; internal circulation and strong vertical stretching up the center of the rapidly rising diapir increased the rate of magma ascent towards the core. Due to cooling and high viscosity the marginal mafic magma was partly crystallized while the unsolidified core ultramafic magma continued its ascent. As a result, different mineral phases crystallized at different pressure-temperature paths. Field relations, geophysical, petrological and experimental studies support this model which explains many of the characteristics of the Gabbro Akarem and some other concentrically zoned mafic-ultramafic intrusions. Received April 24, 2001; revised version accepted November 20, 2001
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号