首页 | 本学科首页   官方微博 | 高级检索  
     

基于频变AVO技术对多尺度裂缝内流体属性反演与识别(英文)
引用本文:刘财,李博南,赵旭,刘洋,鹿琪. 基于频变AVO技术对多尺度裂缝内流体属性反演与识别(英文)[J]. 应用地球物理, 2014, 0(4): 384-394
作者姓名:刘财  李博南  赵旭  刘洋  鹿琪
作者单位:吉林大学地球探测科学与技术学院;
基金项目:supported by the 973 Program of China(No.2013CB429805);the National Natural Science Foundation of China(No.41174080)
摘    要:通过地震数据获取裂缝储藏中流体的性质并对流体类型进行识别,是地震勘探岩性反演的重要问题之一。由于地震波的速度、储层的密度等弹性参数对某些流体不具有很强的敏感性,使只依赖振幅信息进行流体识别的传统AVO方法面临困境。作为传统叠前振幅反演的一个拓展,频变AVO(FDAVO)技术进一步考虑了振幅对频率的依赖关系,将这种依赖关系与地下裂缝结构、流体填充对应起来,能带来更丰富的流体信息。利用该技术,本文提出了一种基于地震数据参数化Chapman模型的贝叶斯反演新方法(BIDCMP),它包含两步算法,即,FDAVO反演储层的非弹性属性和贝叶斯框架下的流体识别。首先,通过匹配观测数据和模型数据,构造差函数反演裂缝储层非弹性参数。随后,在贝叶斯框架下,使用马尔科夫随机场(MRF)作为先验模型,联合多参数场识别流体。本方法在计算过程中,除综合考虑了弹性参数场、测井资料等常规信息外,还特别地加人了第一步中反演得的非弹性参数的约束,从而充分利用了流体粘性差异,最后在最大后验概率(MAP)准则下输出最佳岩性一流体识别结果。分别对合成地震记录和模拟岩性—流体剖面验证本文方法的有效性,结果证明本文方法获得的流体识别结果准确可信。

关 键 词:多尺度裂缝介质  流体识别  频变AVO技术  贝叶斯框架

Fluid identification based on frequency-dependent AVO attribute inversion in multi-scale fracture media
Liu Cai,Li Bo-Nan,Zhao Xu,Liu Yang,Lu Qi. Fluid identification based on frequency-dependent AVO attribute inversion in multi-scale fracture media[J]. Applied Geophysics, 2014, 0(4): 384-394
Authors:Liu Cai  Li Bo-Nan  Zhao Xu  Liu Yang  Lu Qi
Affiliation:Liu Cai, Li Bo-Nan, Zhao Xu, Liu Yang, Lu Qi
Abstract:A key problem in seismic inversion is the identification of the reservoir fluids. Elastic parameters, such as seismic wave velocity and formation density, do not have sufficient sensitivity, thus, the conventional amplitude-versus-offset(AVO) method is not applicable. The frequency-dependent AVO method considers the dependency of the seismic amplitude to frequency and uses this dependency to obtain information regarding the fluids in the reservoir fractures. We propose an improved Bayesian inversion method based on the parameterization of the Chapman model. The proposed method is based on 1) inelastic attribute inversion by the FDAVO method and 2) Bayesian statistics for fluid identification. First, we invert the inelastic fracture parameters by formulating an error function, which is used to match observations and model data. Second, we identify fluid types by using a Markov random field a priori model considering data from various sources, such as prestack inversion and well logs. We consider the inelastic parameters to take advantage of the viscosity differences among the different fluids possible. Finally, we use the maximum posteriori probability for obtaining the best lithology/fluid identification results.
Keywords:Fractured reservoirs  fluid identification  reservoir fluids frequency-dependent AVO method  Bayesian statistics
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号