首页 | 本学科首页   官方微博 | 高级检索  
     

最小二乘支持向量机在海洋测深异常值探测中的应用
引用本文:黄贤源, 翟国君, 隋立芬, 黄谟涛. 最小二乘支持向量机在海洋测深异常值探测中的应用[J]. 武汉大学学报 ( 信息科学版), 2010, 35(10): 1188-1191.
作者姓名:黄贤源  翟国君  隋立芬  黄谟涛
作者单位:1信息工程大学测绘学院,郑州市陇海中路66号450052;2天津海洋测绘研究所,天津市友谊路40号,300061
基金项目:国家863计划资助项目(2007AA12Z326);国家自然科学基金资助项目(40971306,40974010)
摘    要:提出了利用最小二乘支持向量机(LS-SVM)构造海底趋势面,利用该趋势面对海洋测深异常值进行剔除的方法,并与趋势面滤波进行了分析和比较,用定理证明趋势面滤波只是LS-SVM取特定参数时的解。实测算例表明,通过调整LS-SVM的参数,使其构造的趋势面更合理,从而有效地剔除测深异常值。

关 键 词:最小二乘支持向量机(LS-SVM)  趋势面滤波  权重系数  测深异常值
收稿时间:2010-07-22
修稿时间:2013-07-09

Application of Least Square Support Vector Machine to Detecting Outliers of Multi-beam Data
HUANG Xianyuan, ZHAI Guojun, SUI Lifen, HUANG Motao. Application of Least Square Support Vector Machine to Detecting Outliers of Multi-beam Data[J]. Geomatics and Information Science of Wuhan University, 2010, 35(10): 1188-1191.
Authors:HUANG Xianyuan  ZHAI Guojun  SUI Lifen  HUANG Motao
Affiliation:1Institute of Surveying and Mapping,Information Engineering University,66 Middle Longhai Road,Zhengzhou 450052,China;2Naval Institute of Hydrographic Surveying and Charting,40 Youyi Road,Tianjin 300061,China
Abstract:In order to solve the problem of trend surface conformation,a new method of constructing trend surface by LS-SVM is presented,and then outliers of Multi-beam data could be eliminated by the trend surface.In order to illuminate the correctness and rationality so a contrast between this method and the approach of trend surface filter.The theorem proves that the trend surface filter is the especial result of LS-SVM.The example shows that in the process of constructing trend surface by LS-SVM,the weight parameters could be adjusted,so the trend surface have the property of popular and steady,the outliers of Multi-beam data could be eliminated effectively.
Keywords:LS-SVM  trend surface filter  weight parameters  outliers
本文献已被 CNKI 等数据库收录!
点击此处可从《武汉大学学报(信息科学版)》浏览原始摘要信息
点击此处可从《武汉大学学报(信息科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号